The large scale geometry

Žiga Virk

University of Ljubljana, Slovenia

General Topology Symposium 2012, Kobe, Japan
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
The idea: to study the metric spaces from a large perspective. Compact sets \(\approx\) points.
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
The idea: to study the metric spaces from a large perspective. Compact sets \approx points.
\(f : X \rightarrow Y \) a map between metric spaces (no continuity required).

- \(f \) is **proper** if \(f^{-1}(A) \) is bounded for every bounded subset \(A \subset Y \);
- \(f \) is **bornologous** (or large scale uniform, or ls-uniform)
 \(\forall R < \infty, \exists S < \infty : \)
 \[
 d(x, y) < R \Rightarrow d(f(x), f(y)) < S
 \]
- \(f \) is **coarse** if it is proper and bornologous;
- \(f \) is **close** (or ls-equivalent) to \(g : Z \rightarrow Y \) if
 \(\exists R > 0 : d(f(x), g(x)) < R, \forall x \in X. \) [notation: \(f \sim_{ls} g \)]
The large scale geometry

Žiga Virk

The idea

The coarse category

The group setting

Motivation

The combinatorial approach

Lipschitz partitions of unity

\[f : X \to Y \] a map between metric spaces (no continuity required).

- **f** is **proper** if \(f^{-1}(A) \) is bounded for every bounded subset \(A \subseteq Y \);
- **f** is **bornologous** (or large scale uniform, or ls-uniform)
 \[\forall R < \infty, \exists S < \infty : \]
 \[d(x, y) < R \Rightarrow d(f(x), f(y)) < S \]
- **f** is **coarse** if it is proper and bornologous;
- **f** is **close** (or ls-equivalent) to \(g : Z \to Y \) if
 \[\exists R > 0 : d(f(x), g(x)) < R, \forall x \in X. \] [notation: \(f \sim_{ls} g \)]
Coarse category

- **Objects:** metric spaces;
- **Morphisms:** [equivalence classes of] coarse maps;
 - Spaces X and Y are coarsely equivalent $[X \sim_{ls} Y]$, if there exist coarse maps $f : X \to Y$ and $g : Y \to X$ so that $fg \sim_{ls} 1_Y$ and $gf \sim_{ls} 1_X$;
 - A special case of a bornologous map: ls-Lipschitz map (or (c, A)–Lipschitz map). They possess a linear bound on the size of the image:

$$d(f(x), f(y)) \leq cd(x, y) + A, \quad \forall x, y \in X$$

- (c, A)–bilipschitz maps:

$$c^{-1}d(x, y) - A \leq d(f(x), f(y)) \leq cd(x, y) + A, \quad \forall x, y \in X$$
Coarse category

- Objects: metric spaces;
- Morphisms: [equivalence classes of] coarse maps;
- Spaces X and Y are coarsely equivalent $[X \sim_{ls} Y]$, if there exist coarse maps $f : X \to Y$ and $g : Y \to X$ so that $fg \sim_{ls} 1_Y$ and $gf \sim_{ls} 1_X$;
- A special case of a bornologous map: ls-Lipschitz map (or (c, A)—Lipschitz map). They possess a linear bound on the size of the image:
 \[
 d(f(x), f(y)) \leq cd(x, y) + A, \quad \forall x, y \in X
 \]
- (c, A)—bilipschitz maps:
 \[
 c^{-1}d(x, y) - A \leq d(f(x), f(y)) \leq cd(x, y) + A, \quad \forall x, y \in X
 \]
The large scale geometry

Coarse category

- Objects: metric spaces;
- Morphisms: [equivalence classes of] coarse maps;
- Spaces X and Y are coarsely equivalent $[X \sim_{ls} Y]$, if there exist coarse maps $f: X \to Y$ and $g: Y \to X$ so that $fg \sim_{ls} 1_Y$ and $gf \sim_{ls} 1_X$;
- A special case of a bornologous map: ls-Lipschitz map (or $(c, A)-$Lipschitz map). They possess a linear bound on the size of the image:

$$d(f(x), f(y)) \leq cd(x, y) + A, \quad \forall x, y \in X$$

- $(c, A)-$bilipschitz maps:

$$c^{-1}d(x, y) - A \leq d(f(x), f(y)) \leq cd(x, y) + A, \quad \forall x, y \in X$$
Coarse category

- Objects: metric spaces;
- Morphisms: [equivalence classes of] coarse maps;
- Spaces X and Y are coarsely equivalent [$X \sim_{ls} Y$], if there exist coarse maps $f: X \to Y$ and $g: Y \to X$ so that $fg \sim_{ls} 1_Y$ and $gf \sim_{ls} 1_X$;
- A special case of a bornologous map: ls-Lipschitz map (or (c, A)–Lipschitz map). They possess a linear bound on the size of the image:

$$d(f(x), f(y)) \leq cd(x, y) + A, \quad \forall x, y \in X$$

- (c, A)–bilipschitz maps:

$$c^{-1}d(x, y) - A \leq d(f(x), f(y)) \leq cd(x, y) + A, \quad \forall x, y \in X$$
• Is-Lipschitz correspond with coarse maps in the usual setting of (coarsely) geodesic spaces;
 • \(\mathbb{R}^n \sim_{ls} \mathbb{Z}^n \);
 • \(X \sim_{ls} * \) iff \(X \) is bounded;
 • for every metric space \(X \) there exists a discrete \(Y \): \(X \sim_{ls} Y \).
• Is-Lipschitz correspond with coarse maps in the usual setting of (coarsely) geodesic spaces;

• \(\mathbb{R}^n \sim_{ls} \mathbb{Z}^n; \)

• \(X \sim_{ls} \) iff \(X \) is bounded;

• for every metric space \(X \) there exists a discrete \(Y \): \(X \sim_{ls} Y. \)
- ls-Lipschitz correspond with coarse maps in the usual setting of (coarsely) geodesic spaces;
- $\mathbb{R}^n \sim_{ls} \mathbb{Z}^n$;
- $X \sim_{ls} *$ iff X is bounded;
- for every metric space X there exists a discrete Y: $X \sim_{ls} Y$.
• Is-Lipschitz correspond with coarse maps in the usual setting of (coarsely) geodesic spaces;

• $\mathbb{R}^n \sim_{ls} \mathbb{Z}^n$;

• $X \sim_{ls} *$ iff X is bounded;

• for every metric space X there exists a discrete Y: $X \sim_{ls} Y$.

The group setting

\[G = \langle g_1, \ldots, g_n \mid r_1, \ldots \rangle \] a finitely generated group.

Cayley graph \(\Gamma_G \):

- vertices: elements of \(G \);
- edges: \([u, v] \iff \exists i : u = v g_i^{\pm 1} \);
- loops in \(\Gamma_G \) are "relations" on the generating set;
- \(\Gamma_G \) is geodesic;
- \(\Gamma_G \) depends on presentation, its coarse type does not.
The group setting

\[G = \langle g_1, \ldots, g_n \mid r_1, \ldots \rangle \] a finitely generated group.

Cayley graph \(\Gamma_G \):

- vertices: elements of \(G \);
- edges: \([u, v] \iff \exists i : u = vg_i^{\pm 1} \);
- loops in \(\Gamma_G \) are "relations" on the generating set;
- \(\Gamma_G \) is geodesic;
- \(\Gamma_G \) depends on presentation, its coarse type does not.
The group setting

\[G = \langle g_1, \ldots, g_n \mid r_1, \ldots \rangle \] a finitely generated group. Cayley graph \(\Gamma_G \):

- vertices: elements of \(G \);
- edges: \([u, v] \iff \exists i : u = v g_i^{\pm 1} \);
- loops in \(\Gamma_G \) are ”relations” on the generating set;
- \(\Gamma_G \) is geodesic;
- \(\Gamma_G \) depends on presentation, its coarse type does not.
The large scale geometry

Žiga Virk

The idea

The coarse category

The group setting

Motivation

The combinatorial approach

Lipschitz partitions of unity
Coarse invariants of groups

Gromov initiated intense research.

• being finite / finitely presented;
• virtually Abelian;
• virtually Nilpotent;
• virtually free;
• amenable;
• hyperbolic;
• asymptotic dimension;
• ends of group;
• growth rate.

Group G has virtual property P if there exists a finite index subgroup $H \leq G$ with property P.
Coarse invariants of groups

Gromov initiated intense research.

- being finite / finitely presented;
- virtually Abelian;
- virtually Nilpotent;
- virtually free;
- amenable;
- hyperbolic;
- asymptotic dimension;
- ends of group;
- growth rate.

Group G has virtual property P if there exists a finite index subgroup $H \leq G$ with property P.
Application to Novikov conjecture by Yu:

- Novikov conjecture holds for groups of finite asymptotic dimension;

- Novikov conjecture holds for groups with property A.

Important aspect: coarse embeddings into Hilbert space.
Application to Novikov conjecture by Yu:

- Novikov conjecture holds for groups of finite asymptotic dimension;
- Novikov conjecture holds for groups with property A.

Important aspect: coarse embeddings into Hilbert space.
Application to Novikov conjecture by Yu:

- Novikov conjecture holds for groups of finite asymptotic dimension;
- Novikov conjecture holds for groups with property A.

Important aspect: coarse embeddings into Hilbert space.
Property A can be considered as a variant of the amenability.

A countable discrete group G is **amenable** if $\forall R, \varepsilon > 0$ exists a finitely supported $f \in \ell^1(G)$ such that:

1. $\|f\|_1 = 1$;
2. $\|gf - f\|_1 < \varepsilon, \forall g \in B(e, R)$.

A countable discrete group G has **property A** if there exists $1 \leq p < \infty$ so that $\forall R, \varepsilon > 0$ exists $F : G \rightarrow \ell^1(G)$ with the following properties:

1. $\|F_x\|_p = 1, \forall x \in G$;
2. $\|F_x - F_y\|_p < \varepsilon, \forall x, y \in G, d(x, y) < R$;
3. $\exists S > 0 : \text{supp } F_x \subset B(x, S), \forall x \in G$.

Free group on two elements has property A but is not amenable.
Property A can be considered as a variant of the amenability.

A countable discrete group G is \textbf{amenable} if $\forall R, \varepsilon > 0$ exists a finitely supported $f \in \ell^1(G)$ such that:

1. $\|f\|_1 = 1$;
2. $\|gf - f\|_1 < \varepsilon$, $\forall g \in B(e, R)$.

A countable discrete group G has \textbf{property A} if there exists $1 \leq p < \infty$ so that $\forall R, \varepsilon > 0$ exists $F : G \rightarrow \ell^1(G)$ with the following properties:

1. $\|F_x\|_p = 1$, $\forall x \in G$;
2. $\|F_x - F_y\|_p < \varepsilon$, $\forall x, y \in G$, $d(x, y) < R$;
3. $\exists S > 0 : \text{supp } F_x \subset B(x, S)$, $\forall x \in G$.

Free group on two elements has property A but is not amenable.
Property A can be considered as a variant of the amenability.

A countable discrete group G is **amenable** if $\forall R, \varepsilon > 0$ exists a finitely supported $f \in \ell^1(G)$ such that:

1. $\|f\|_1 = 1$;
2. $\|gf - f\|_1 < \varepsilon, \forall g \in B(e, R)$.

A countable discrete group G has **property A** if there exists $1 \leq p < \infty$ so that $\forall R, \varepsilon > 0$ exists $F : G \to \ell^1(G)$ with the following properties:

1. $\|F_x\|_p = 1, \forall x \in G$;
2. $\|F_x - F_y\|_p < \varepsilon, \forall x, y \in G, d(x, y) < R$;
3. $\exists S > 0 : supp F_x \subset B(x, S), \forall x \in G$.

Free group on two elements has property A but is not amenable.
Property A can be considered as a variant of the amenability.

A countable discrete group G is **amenable** if $\forall R, \varepsilon > 0$ exists a finitely supported $f \in \ell^1(G)$ such that:

1. $\|f\|_1 = 1$;
2. $\|gf - f\|_1 < \varepsilon, \forall g \in B(e, R)$.

A countable discrete group G has **property A** if there exists $1 \leq p < \infty$ so that $\forall R, \varepsilon > 0$ exists $F : G \to \ell^1(G)$ with the following properties:

1. $\|F_x\|_p = 1, \forall x \in G$;
2. $\|F_x - F_y\|_p < \varepsilon, \forall x, y \in G, d(x, y) < R$;
3. $\exists S > 0 : \text{supp } F_x \subset B(x, S), \forall x \in G$.

Free group on two elements has property A but is not amenable.
Property A can be considered as a weakening of the finite asymptotic dimension.

A discrete metric space of bounded geometry has **property A**, if \(\forall R, \varepsilon > 0, \exists S > 0 \) and a family of finite nonempty subsets \(\{A_x\}_{x \in X} \) of \(X \times \mathbb{N} \) so that:

1. if \(x, y \in X, d(x, y) \leq R \) then \(\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \varepsilon \);
2. if \(x \in X \) and \((y, n) \in A_x\) then \(d(x, y) \leq S \).

A discrete metric space of bounded geometry has **asymptotic dimension at most** \(n \) if, additionally, the projection of \(A_x \) onto \(X \) has at most \(n + 1 \) elements, \(\forall x \in X, \forall R, \varepsilon > 0 \).
Property A can be considered as a weakening of the finite asymptotic dimension.

A discrete metric space of bounded geometry has **property A**, if \(\forall R, \varepsilon > 0, \exists S > 0 \) and a family of finite nonempty subsets \(\{A_x\}_{x \in X} \) of \(X \times \mathbb{N} \) so that:

1. if \(x, y \in X, d(x, y) \leq R \) then \(\frac{|A_x \Delta A_y|}{|A_x \cap A_y|} < \varepsilon \);
2. if \(x \in X \) and \((y, n) \in A_x \) then \(d(x, y) \leq S \).

A discrete metric space of bounded geometry has **asymptotic dimension at most** \(n \) if, additionally, the projection of \(A_x \) onto \(X \) has at most \(n + 1 \) elements, \(\forall x \in X, \forall R, \varepsilon > 0 \).
The combinatorial approach

Idea: dualization of the shape theory. Representation of the coarse structure by approximating complexes.

Conventions:

- short map: Lipschitz map with constant 1;
- \(A(\Gamma) \) for a graph \(\Gamma \): graph \(\Gamma \) with added edges. For vertices \(u, v, d(u, v) = 2 \) the edge \([u, v]\) is added;
- \(A(\Gamma) \) of a graph \(\Gamma \): \(A(\Gamma) \) is a complex of \(\Gamma \) so that \(\Delta \) is a simplex of \(A(\Gamma) \) whenever \([v, w]\) belongs to \(\Gamma \) for all \(v, w \in \Delta \);
- motivation: Rips graphs of a space.
The combinatorial approach

Idea: dualization of the shape theory. Representation of the coarse structure by approximating complexes.

Conventions:

- short map: Lipschitz map with constant 1;
- $A(\Gamma)$ for a graph Γ: graph Γ with added edges. For vertices $u, v, d(u, v) = 2$ the edge $[u, v]$ is added;
- $A(\Gamma)$ of a graph Γ: $A(\Gamma)$ is a complex of Γ so that Δ is a simplex of $A(\Gamma)$ whenever $[v, w]$ belongs to Γ for all $v, w \in \Delta$;
- motivation: Rips graphs of a space.
Approximation by the system of graphs

Objects: Coarse graphs.

A coarse graph is a direct sequence \(\{ V_1 \to V_2 \to \ldots \} \) of graphs \(V_n \) and short maps \(i_{n,m}: V_n \to V_m \) for all \(n \leq m \) such that

1. \(i_{n,n} = id \) for all \(n \geq 1 \),
2. \(i_{n,k} = i_{m,k} \circ i_{n,m} \) for all \(n \leq m \leq k \),
3. for every \(n \geq 1 \) there is \(m > n \) so that \(i_{n,m}: A(V_n) \to V_m \) is short.
Approximation by the system of graphs

Objects: Coarse graphs.

A **coarse graph** is a direct sequence \(\{ V_1 \to V_2 \to \ldots \} \) of graphs \(V_n \) and short maps \(i_{n,m} : V_n \to V_m \) for all \(n \leq m \) such that

1. \(i_{n,n} = id \) for all \(n \geq 1 \),
2. \(i_{n,k} = i_{m,k} \circ i_{n,m} \) for all \(n \leq m \leq k \),
3. for every \(n \geq 1 \) there is \(m > n \) so that \(i_{n,m} : A(V_n) \to V_m \) is short.
Morphisms: equivalence classes of pre-morphisms.

Suppose $\mathcal{V} = \{ V_1 \overset{i_{1,2}}{\rightarrow} V_2 \overset{i_{2,3}}{\rightarrow} \cdots \}$ and $\mathcal{W} = \{ W_1 \overset{j_{1,2}}{\rightarrow} W_2 \overset{j_{2,3}}{\rightarrow} \cdots \}$ are two coarse graphs. A pre-morphism $F : \mathcal{V} \rightarrow \mathcal{W}$: a function $n_F : \mathbb{N} \rightarrow \mathbb{N}$, and short maps $f_k : V_k \rightarrow W_{n_F(k)}$ so that for every $k \geq 1$ there is $m \geq n_F(k+1)$ resulting in $j_{n_F(k),m} \circ f_k \sim_{ls} j_{n_F(k+1),m} \circ f_{k+1} \circ i_{k,k+1}$.
Two pre-morphisms $F, G : \mathcal{V} \to \mathcal{W}$ are considered to be equivalent if for every k there is $m \geq \max\{n_F(k), n_G(k)\}$ so that $j_{n_F(k), m \circ f_k} \sim_{ls} j_{n_G(k), m \circ g_k}$. The sets of equivalence classes of pre-morphisms form the set of morphisms from \mathcal{V} to \mathcal{W}.

Coarse graphs \mathcal{V} and \mathcal{W} are ls-equivalent if there exist pre-morphisms $F : \mathcal{V} \to \mathcal{W}$ and $G : \mathcal{W} \to \mathcal{V}$ such that $G \circ F$ is equivalent to $id_\mathcal{V}$ and $F \circ G$ is equivalent to $id_\mathcal{W}$.
The large scale geometry

Žiga Virk

The idea
The coarse category
The group setting
Motivation
The combinatorial approach
Lipschitz partitions of unity

Two pre-morphisms \(F, G : \mathcal{V} \to \mathcal{W} \) are considered to be equivalent if for every \(k \) there is \(m \geq \max\{n_F(k), n_G(k)\} \) so that \(j_{n_F(k),m} \circ f_k \sim_{ls} j_{n_G(k),m} \circ g_k \). The sets of equivalence classes of pre-morphisms form the set of morphisms from \(\mathcal{V} \) to \(\mathcal{W} \).

Coarse graphs \(\mathcal{V} \) and \(\mathcal{W} \) are \textbf{ls-equivalent} if there exist pre-morphisms \(F : \mathcal{V} \to \mathcal{W} \) and \(G : \mathcal{W} \to \mathcal{V} \) such that \(G \circ F \) is equivalent to \(id_{\mathcal{V}} \) and \(F \circ G \) is equivalent to \(id_{\mathcal{W}} \).
Associating a coarse graph to the metric space.

- **Rips graphs** $RipsG_r$ for $r \to \infty$:
 1. maps i are identity;
 2. $[u, v]$ is an edge in $RipsG_r$ iff $d(u, v) \leq r$.

- Rips graph of an increasing sequence of uniformly bounded covers \mathcal{U}_n for which Lebesgue number $\to \infty$:
 1. maps i are identity;
 2. $[u, v]$ is an edge in $RipsG_{\mathcal{U}_n}$ iff u and v lie in the same element of \mathcal{U}_n.

If $\mathcal{V} = \{V_1 \to V_2 \to \ldots\}$ is a coarse graph of (X, d_X) and $\mathcal{W} = \{W_1 \to W_2 \to \ldots\}$ is a coarse graph of (Y, d_Y), then there is a natural bijection between bornologous maps from X to Y and morphisms from \mathcal{V} to \mathcal{W}.

The description is sufficient for the formulation of the coarse type but not for some other invariants.
Associating a coarse graph to the metric space.

- **Rips graphs** $RipsG_r$ for $r \to \infty$:
 1. maps i are identity;
 2. $[u, v]$ is an edge in $RipsG_r$ iff $d(u, v) \leq r$.

- **Rips graph** of an increasing sequence of uniformly bounded covers \mathcal{U}_n, for which Lebesgue number $\to \infty$:
 1. maps i are identity;
 2. $[u, v]$ is an edge in $RipsG_{\mathcal{U}_n}$ iff u and v lie in the same element of \mathcal{U}_n.

If $\mathcal{V} = \{V_1 \to V_2 \to \ldots\}$ is a coarse graph of (X, d_X) and $\mathcal{W} = \{W_1 \to W_2 \to \ldots\}$ is a coarse graph of (Y, d_Y), then there is a natural bijection between bornologous maps from X to Y and morphisms from \mathcal{V} to \mathcal{W}.

The description is sufficient for the formulation of the coarse type but not for some other invariants.
Associating a coarse graph to the metric space.

- Rips graphs $RipsG_r$ for $r \to \infty$:
 1. maps i are identity;
 2. $[u, v]$ is an edge in $RipsG_r$ iff $d(u, v) \leq r$.

- Rips graph of an increasing sequence of uniformly bounded covers \mathcal{U}_n for which Lebesgue number $\to \infty$:
 1. maps i are identity;
 2. $[u, v]$ is an edge in $RipsG_{\mathcal{U}_n}$ iff u and v lie in the same element of \mathcal{U}_n.

If $\mathcal{V} = \{V_1 \to V_2 \to \ldots\}$ is a coarse graph of (X, d_X) and $\mathcal{W} = \{W_1 \to W_2 \to \ldots\}$ is a coarse graph of (Y, d_Y), then there is a natural bijection between bornologous maps from X to Y and morphisms from \mathcal{V} to \mathcal{W}.

The description is sufficient for the formulation of the coarse type but not for some other invariants.
Associating a coarse graph to the metric space.

- Rips graphs $RipsG_r$ for $r \to \infty$:
 1. maps i are identity;
 2. $[u, v]$ is an edge in $RipsG_r$ iff $d(u, v) \leq r$.

- Rips graph of an increasing sequence of uniformly bounded covers \mathcal{U}_n for which Lebesgue number $\to \infty$:
 1. maps i are identity;
 2. $[u, v]$ is an edge in $RipsG_{\mathcal{U}_n}$ iff u and v lie in the same element of \mathcal{U}_n.

If $\mathcal{V} = \{V_1 \to V_2 \to \ldots\}$ is a coarse graph of (X, d_X) and $\mathcal{W} = \{W_1 \to W_2 \to \ldots\}$ is a coarse graph of (Y, d_Y), then there is a natural bijection between bornologous maps from X to Y and morphisms from \mathcal{V} to \mathcal{W}.

The description is sufficient for the formulation of the coarse type but not for some other invariants.
Approximation by the system of complexes

Objects: Coarse complexes.

A **coarse simplicial complex** is a direct sequence \(\{ V_1 \to V_2 \to \ldots \} \) of simplicial complexes \(V_n \) and simplicial maps \(i_{n,m} : V_n \to V_m \) for all \(n \leq m \) such that

1. \(i_{n,n} = id \) for all \(n \geq 1 \),
2. \(i_{n,k} = i_{m,k} \circ i_{n,m} \) for all \(n \leq m \leq k \),
3. for every \(n \geq 1 \) there is \(m > n \) so that \(i_{n,m} : A(V_n) \to V_m \) is short.
Approximation by the system of complexes

Objects: Coarse complexes.

A coarse simplicial complex is a direct sequence \(\{ V_1 \to V_2 \to \ldots \} \) of simplicial complexes \(V_n \) and simplicial maps \(i_{n,m} : V_n \to V_m \) for all \(n \leq m \) such that

1. \(i_{n,n} = id \) for all \(n \geq 1 \),
2. \(i_{n,k} = i_{m,k} \circ i_{n,m} \) for all \(n \leq m \leq k \),
3. for every \(n \geq 1 \) there is \(m > n \) so that \(i_{n,m} : A(V_n) \to V_m \) is short.
Morphisms: equivalence classes of pre-morphisms.

Suppose $\mathcal{V} = \{V_1 \to V_2 \to \ldots\}$ and $\mathcal{W} = \{W_1 \to W_2 \to \ldots\}$ are two coarse coarse simplicial complexes. A **pre-morphism** $F: \mathcal{V} \to \mathcal{W}$: a function $n_F: \mathbb{N} \to \mathbb{N}$, and simplicial maps $f_k: V_k \to W_{n_F(k)}$ so that for every $k \geq 1$ there is $m \geq n_F(k + 1)$ resulting in

$$j_{n_F(k),m} \circ f_k \sim ls j_{n_F(k+1),m} \circ f_{k+1} \circ i_{k,k+1}.$$
Associating a coarse simplicial complex to the metric space.

- Rips complexes $Rips_r$ for $r \to \infty$:
 1. maps i are identity;
 2. $[u_0, u_1, u_2, \ldots, u_k]$ is a simplex in $Rips_r$ iff
 \[\text{Diam}\{u_0, u_1, u_2, \ldots, u_k\} \leq r. \]

- Rips complex of an increasing sequence of uniformly bounded covers \mathcal{U}_n for which Lebesgue number $\to \infty$:
 1. maps i are identity;
 2. $[u_0, u_1, u_2, \ldots, u_k]$ is a simplex in $Rips_{\mathcal{U}_n}$ iff
 $[u_0, u_1, u_2, \ldots, u_k]$ is a subset of some element of \mathcal{U}_n.
Associating a coarse simplicial complex to the metric space.

- Rips complexes $Rips_r$ for $r \to \infty$:
 1. maps i are identity;
 2. $[u_0, u_1, u_2, \ldots, u_k]$ is a simplex in $Rips_r$ iff $Diam\{u_0, u_1, u_2, \ldots, u_k\} \leq r$.

- Rips complex of an increasing sequence of uniformly bounded covers \mathcal{U}_n for which Lebesgue number $\to \infty$:
 1. maps i are identity;
 2. $[u_0, u_1, u_2, \ldots, u_k]$ is a simplex in $Rips_{\mathcal{U}_n}$ iff $[u_0, u_1, u_2, \ldots, u_k]$ is a subset of some element of \mathcal{U}_n.
Suppose \mathcal{U}_n is a sequence of uniformly bounded covers of X such that \mathcal{U}_{n-1} is a star refinement of \mathcal{U}_n for each $n \geq 1$. Then the sequence $\mathcal{N}(\mathcal{U}_1) \to \mathcal{N}(\mathcal{U}_2) \to \ldots$ of nerves of covers \mathcal{U}_n forms a coarse simplicial complex if $i_{n,n+1}(U)$ contains the star $st(U,\mathcal{U}_n)$ for each $U \in \mathcal{U}_n$. Any such coarse complex will be denoted by Čech$_\star(X)$ and called a coarse Čech complex of X.

If $\mathcal{V} = \{V_1 \to V_2 \to \ldots\}$ is a coarse simplicial complex of (X,d_X) and $\mathcal{W} = \{W_1 \to W_2 \to \ldots\}$ is a coarse simplicial complex of (Y,d_Y), then there is a natural bijection between bornologous maps from X to Y and morphisms from \mathcal{V} to \mathcal{W}.
Suppose \mathcal{U}_n is a sequence of uniformly bounded covers of X such that \mathcal{U}_{n-1} is a star refinement of \mathcal{U}_n for each $n \geq 1$. Then the sequence $\mathcal{N}(\mathcal{U}_1) \to \mathcal{N}(\mathcal{U}_2) \to \ldots$ of nerves of covers \mathcal{U}_n forms a coarse simplicial complex if $i_{n,n+1}(U)$ contains the star $st(U, \mathcal{U}_n)$ for each $U \in \mathcal{U}_n$. Any such coarse complex will be denoted by $\check{\text{Č}}$ech$_*(X)$ and called a coarse Čech complex of X.

If $\mathcal{V} = \{V_1 \to V_2 \to \ldots\}$ is a coarse simplicial complex of (X, d_X) and $\mathcal{W} = \{W_1 \to W_2 \to \ldots\}$ is a coarse simplicial complex of (Y, d_Y), then there is a natural bijection between bornologous maps from X to Y and morphisms from \mathcal{V} to \mathcal{W}.
Simplicial maps \(f, g : K \to L \) between simplicial complexes are **contiguous** if for every simplex \(\Delta \) of \(K \), \(f(\Delta) \cup g(\Delta) \) is contained in some simplex of \(L \).

Given a coarse simplicial complex \(K \) we say its **asymptotic dimension** is at most \(n \) (notation: \(asdim(K) \leq n \)) if for each \(m \) there is \(k > m \) such that \(i_{m,k} \) factors contiguously through an \(n \)-dimensional simplicial complex.
Asymptotic dimension

Simplicial maps \(f, g : K \to L \) between simplicial complexes are **contiguous** if for every simplex \(\Delta \) of \(K \), \(f(\Delta) \cup g(\Delta) \) is contained in some simplex of \(L \).

Given a coarse simplicial complex \(\mathcal{K} \) we say its **asymptotic dimension** is at most \(n \) (notation: \(asdim(\mathcal{K}) \leq n \)) if for each \(m \) there is \(k > m \) such that \(i_{m,k} \) factors contiguously through an \(n \)-dimensional simplicial complex.

\[
\cdots \to K_m \xrightarrow{i_{m,k}} \cdots \to K_k \to \cdots
\]

\[L^{(n)} \]
A coarse simplicial complex $\mathcal{K} = \{ K_1 \to K_2 \to \ldots \}$ has Property A if for each $k \geq 1$ and each $\epsilon > 0$ there is $n > k$ and a function $f: |K_k|_m \to |K_n|_m$ such that f is contiguous to $i_{k,n}: |K_k| \to |K_n|$ and the diameter of $f(\Delta)$ is at most ϵ for each simplex Δ of K_k.

\[i_{m,k} \]

\[\cdots \to K_k \to \cdots \to K_n \to \cdots \]

\[|K_k|_m \to |K_n|_m \]
Coarse simple connectivity

A metric space X is **coarsely k-connected** if for each r there exists $R \geq r$ so that the mapping $|Rips_r(X)| \to |Rips_R(X)|$ induces a trivial map of π_i for $0 \leq i \leq k$.

1. A finitely generated group is coarsely 1-connected iff it is finitely presented;

2. [Fujiwara, White] Suppose X is a geodesic metric space. X is quasi-isometric to a simplicial tree if $H_1(X)$ is uniformly generated and X is of asymptotic dimension 1;

3. An application of the previous item: finitely presented groups of asymptotic dimension 1 are virtually free;

4. If the fundamental group of a compact, connected, locally connected metric space is countable, then it is finitely presented.
Coarse simple connectivity

A metric space X is **coarsely k-connected** if for each r there exists $R \geq r$ so that the mapping $|Rips_r(X)| \to |Rips_R(X)|$ induces a trivial map of π_i for $0 \leq i \leq k$.

1. A finitely generated group is coarsely 1–connected iff it is finitely presented;
2. [Fujiwara, White] Suppose X is a geodesic metric space. X is quasi-isometric to a simplicial tree if $H_1(X)$ is uniformly generated and X is of asymptotic dimension 1;
3. An application of the previous item: finitely presented groups of asymptotic dimension 1 are virtually free;
4. If the fundamental group of a compact, connected, locally connected metric space is countable, then it is finitely presented.
Coarse simple connectivity

A metric space X is **coarsely k-connected** if for each r there exists $R \geq r$ so that the mapping $|\text{Rips}_r(X)| \to |\text{Rips}_R(X)|$ induces a trivial map of π_i for $0 \leq i \leq k$.

1. A finitely generated group is coarsely 1–connected iff it is finitely presented;
2. [Fujiwara, White] Suppose X is a geodesic metric space. X is quasi-isometric to a simplicial tree if $H_1(X)$ is uniformly generated and X is of asymptotic dimension 1;
3. An application of the previous item: finitely presented groups of asymptotic dimension 1 are virtually free;
4. If the fundamental group of a compact, connected, locally connected metric space is countable, then it is finitely presented.
Coarse simple connectivity

A metric space X is **coarsely k-connected** if for each r there exists $R \geq r$ so that the mapping $|\text{Rips}_r(X)| \to |\text{Rips}_R(X)|$ induces a trivial map of π_i for $0 \leq i \leq k$.

1. A finitely generated group is coarsely 1–connected iff it is finitely presented;
2. [Fujiwara, White] Suppose X is a geodesic metric space. X is quasi-isometric to a simplicial tree if $H_1(X)$ is uniformly generated and X is of asymptotic dimension 1;
3. An application of the previous item: finitely presented groups of asymptotic dimension 1 are virtually free;
4. If the fundamental group of a compact, connected, locally connected metric space is countable, then it is finitely presented.
Coarse simple connectivity

A metric space X is **coarsely k-connected** if for each r there exists $R \geq r$ so that the mapping $|\text{Rips}_r(X)| \rightarrow |\text{Rips}_R(X)|$ induces a trivial map of π_i for $0 \leq i \leq k$.

1. A finitely generated group is coarsely 1–connected iff it is finitely presented;
2. [Fujiwara, White] Suppose X is a geodesic metric space. X is quasi-isometric to a simplicial tree if $H_1(X)$ is uniformly generated and X is of asymptotic dimension 1;
3. An application of the previous item: finitely presented groups of asymptotic dimension 1 are virtually free;
4. If the fundamental group of a compact, connected, locally connected metric space is countable, then it is finitely presented.
If the fundamental group of a compact, connected, locally connected metric space X is countable, then it is finitely presented:

1. $\pi_1(X)$ countable $\Rightarrow \exists \tilde{X}$;
2. X geodesic $\Rightarrow \tilde{X}$ geodesic;
3. $\pi_1(X)$ acts on \tilde{X} (Švarc-Milnor Lemma) $\pi_1(X)$ finitely generated and $\pi_1(X) \cong \pi_1\tilde{X}$;
4. \tilde{X} coarsely simply connected $\Rightarrow \pi_1(X)$ coarsely simply connected;
5. $\pi_1(X)$ finitely presented.
If the fundamental group of a compact, connected, locally connected metric space X is countable, then it is finitely presented:

1. $\pi_1(X)$ countable $\Rightarrow \exists \tilde{X}$;
2. X geodesic $\Rightarrow \tilde{X}$ geodesic;
3. $\pi_1(X)$ acts on \tilde{X} \Rightarrow [Švarc-Milnor Lemma] $\pi_1(X)$ finitely generated and $\pi_1(X) \simeq_{ls} \tilde{X}$;
4. \tilde{X} coarsely simply connected $\Rightarrow \pi_1(X)$ coarsely simply connected;
5. $\pi_1(X)$ finitely presented.
If the fundamental group of a compact, connected, locally connected metric space X is countable, then it is finitely presented:

1. $\pi_1(X)$ countable $\Rightarrow \exists \tilde{X}$;
2. X geodesic $\Rightarrow \tilde{X}$ geodesic;
3. $\pi_1(X)$ acts on \tilde{X} \Rightarrow [Švarc-Milnor Lemma] $\pi_1(X)$ finitely generated and $\pi_1(X) \simeq_{ls} \tilde{X}$;
4. \tilde{X} coarsely simply connected $\Rightarrow \pi_1(X)$ coarsely simply connected;
5. $\pi_1(X)$ finitely presented.
If the fundamental group of a compact, connected, locally connected metric space X is countable, then it is finitely presented:

1. $\pi_1(X)$ countable $\Rightarrow \exists \tilde{X}$;
2. X geodesic $\Rightarrow \tilde{X}$ geodesic;
3. $\pi_1(X)$ acts on $\tilde{X} \Rightarrow$ [Švarc-Milnor Lemma] $\pi_1(X)$ finitely generated and $\pi_1(X) \simeq_{ls} \tilde{X}$;
4. \tilde{X} coarsely simply connected $\Rightarrow \pi_1(X)$ coarsely simply connected;
5. $\pi_1(X)$ finitely presented.
If the fundamental group of a compact, connected, locally connected metric space X is countable, then it is finitely presented:

1. $\pi_1(X)$ countable \Rightarrow $\exists \tilde{X}$;
2. X geodesic \Rightarrow \tilde{X} geodesic;
3. $\pi_1(X)$ acts on $\tilde{X} \Rightarrow$ [Švarc-Milnor Lemma] $\pi_1(X)$ finitely generated and $\pi_1(X) \simeq_{ls} \tilde{X}$;
4. \tilde{X} coarsely simply connected \Rightarrow $\pi_1(X)$ coarsely simply connected;
5. $\pi_1(X)$ finitely presented.
If the fundamental group of a compact, connected, locally connected metric space X is countable, then it is finitely presented:

1. $\pi_1(X)$ countable $\Rightarrow \exists \tilde{X}$;
2. X geodesic $\Rightarrow \tilde{X}$ geodesic;
3. $\pi_1(X)$ acts on $\tilde{X} \Rightarrow$ [Švarc-Milnor Lemma] $\pi_1(X)$ finitely generated and $\pi_1(X) \simeq_{ls} \tilde{X}$;
4. \tilde{X} coarsely simply connected $\Rightarrow \pi_1(X)$ coarsely simply connected;
5. $\pi_1(X)$ finitely presented.
Partitions of unity

Given $\delta > 0$ and a simplicial complex K, $f : X \to K$ is a δ–partition of unity if it is (δ, δ)–Lipschitz and $\{ f^{-1}(st(v)) \}_{v \in K(0)}$ is a uniformly bounded cover with Lebesgue number at least δ^{-1}.

A metric space X is large scale paracompact iff for every $\delta > 0$ there exists a δ–partition of unity.

A metric space of bounded geometry is large scale paracompact iff it has property A.
Partitions of unity

Given $\delta > 0$ and a simplicial complex K, $f : X \to K$ is a δ–partition of unity if it is (δ, δ)–Lipschitz and $\{f^{-1}(st(v))\}_{v \in K(0)}$ is a uniformly bounded cover with Lebesgue number at least δ^{-1}.

A metric space X is large scale paracompact iff for every $\delta > 0$ there exists a δ–partition of unity.

A metric space of bounded geometry is large scale paracompact iff it has property A.
Partitions of unity

Given $\delta > 0$ and a simplicial complex K, $f : X \to K$ is a δ—partition of unity if it is (δ, δ)—Lipschitz and \(\{ f^{-1}(st(v)) \}_{v \in K(0)} \) is a uniformly bounded cover with Lebesgue number at least δ^{-1}.

A metric space X is large scale paracompact iff for every $\delta > 0$ there exists a δ—partition of unity.

A metric space of bounded geometry is large scale paracompact iff it has property A.