Reflection Theorems in Topology

Sakaé Fuchino (渕野 昌)

Dept. of Computer Sciences Kobe University

(神戸大学大学院 システム情報学研究科)

http://kurt.scitec.kobe-u.ac.jp/~fuchino/

(16. Dezember 2012 (18:06 JST) version)

General Topology Symposium 2012

於 神戸大学 瀧川記念学術交流会館 December 12 - 14, 2012

December 13, 2012

This presentation is typeset by pLATEX with beamer class.

Theorem 1. (A. Dow, 1988)

For any countably compact Hausdorff space X if all subspaces of X of cardinality $\leq \aleph_1$ are metrizable then X is also metrizable.

Theorem 2. (A. Hajnal and I. Juhász, 1976)

For any uncountable cardinal κ there is a non-metrizable space X s.t. all subspaces Y of X of cardinality $< \kappa$ are metrizable.

Sketch of the Proof

Theorem 3. (S.F., I.Juhász, L.Soukup, Z.Szentmiklóssy and T.Usuba 2011, S.F., Soukup, H.Sakai and Usuba, 201?) The following assertion is equivalent with the Fodor-type reflection principle (FRP) over ZFC:

For any <u>locally countably compact Hausdorff</u> space X if all subspaces of X of cardinality $\leq \aleph_1$ are metrizable then X is also metrizable.

- ► The following assertions among many others are also kown to be equivalent to FRP over ZFC:
 - **(S.F., 2008, S.F., L.Soukup, H.Sakai and T.Usuba, 201?)** For every T_1 -space X with point countable base, if all subspaces of X of cardinality $\leq \aleph_1$ are left-separated then X itself is also left-separated.
 - (S.F., I.Juhász, L.Soukup, Z.Szentmiklóssy and T.Usuba 2011, S.F., Soukup, H.Sakai and Usuba, 201?) For every locally separable countably tight topological space X, if all subspaces of X of cardinality $\leq \aleph_1$ are meta-Lindelöf, then X itself is also meta-Lindelöf.
 - **(S.F., Soukup, H.Sakai and Usuba, 201?)** For every countably tight topological space X of local density $\leq \aleph_1$, if all subspace of cardinality $\leq \aleph_1$ are collectionwise Hausdorff, then X is collectionwise Hausdorff.

Proof of the equivalences

- The "⇒" direction of the equivalence proofs are quite involved (we skip it here).
- ▶ Most of the implications "¬FRP $\Rightarrow \cdots$ " can be proved by the following construction of topological spaces:

Fact. If $\neg FRP$ holds then there is a regular cardinal λ with $ADS^-(\lambda)$: there are stationary $E^* \subseteq E^\lambda_\omega$ and a ladder system $g^*: E^* \to [\lambda]^{\aleph_0}$ s.t. $g^* \upharpoonright \alpha$ is essentially disjoint for all $\alpha < \lambda$.

Fact. If $\neg FRP$ holds then there is a regular cardinal λ with $ADS^-(\lambda)$: there are stationary $E^* \subseteq E^\lambda_\omega$ and a ladder system $g^*: E^* \to [\lambda]^{\aleph_0}$ s.t. $g^* \upharpoonright \alpha$ is essentially disjoint for all $\alpha < \lambda$.

- ▶ Let λ , E^* , g^* be as above. We may assume that $g^*(\alpha) \cap E^* = \emptyset$ for all $\alpha \in E^*$.
- ▶ Let $X = E^* \cup \bigcup_{\alpha \in E^*} g^*(\alpha)$ and \mathcal{O} be the topology on X generated from

$$\begin{split} \mathcal{B} &= \{\{\alpha\} \ : \ \alpha \in \bigcup_{\alpha \in E^*} g^*(\alpha)\} \\ & \cup \{g^*(\alpha) \cup \sup\{\alpha\} \setminus x \ : \ \alpha \in E^*, x \in [g^*(\alpha)]^{<\aleph_0}\} \end{split}$$

- Any subspace Y of X of cardinality $<\lambda$ is metrizable: Since $g^*(\alpha)$, $\alpha \in E^* \cap Y$ are essentially disjoint, Y can be partitioned into disjoint metrizable open subspaces.
- ► X itself is not metrizable since it is not meta-Lindelöf:

 Consider the open B. Fodor's Lemma imples that there is no point countable open refinement.

Another reflection statement on metrizability

- ▶ Recall the reflection theorems on metrizability on the first slide.
- \triangleright Restriction to the spaces of countable tightness already makes the reflection number of metrizability consistently $< \infty$:

Theorem 4. Suppose that κ is a/the ω_1 -strongly compact cardinal. For any countably tight X, if all subspaces of X of cardinality $< \kappa$ are metrizable, then X itself is also metrizable.

Theorem 4. Suppose that κ is a/the ω_1 -strongly compact cardinal. For any countably tight X, if all subspaces of X of cardinality $< \kappa$ are metrizable, then X itself is also metrizable.

Proof.

- ▶ For X as above, let $A = X \dot{\cup} [X]^{\aleph_0} \dot{\cup} \mathbb{R}$.
- ▶ Let $E, R \subseteq A$ be defined by

$$x E y : \Leftrightarrow x \in X, y \in [X]^{\aleph_0} \text{ and } x \in y; \text{ and } x R y : \Leftrightarrow x \in X, y \in [X]^{\aleph_0} \text{ and } x \in \overline{y}.$$

Note that R decides the topology of X. Let \leq be the canonical less than or equal to relation on \mathbb{R} .

- ▶ Let T be the $\mathcal{L}_{\omega_1,\omega}$ theory in $L = \{E, R, d(.,.), \leq, c_a\}_{a \in A}$ consisting of quantifier free diagram of $\langle A, E, R \rangle$ and the assertion "m is a metric generating the topology introduced by R".
- ▶ Then T is $< \kappa$ -satisfiable. Since κ is ω_1 -strongly compact, T is satisfiable. A metric of X can be constructed from a model of T. \square

 \blacktriangleright We can consider the following cardinal numbers (they can be ∞):

```
\begin{split} \mathfrak{Refl} &= \min\{\kappa : \text{for all } \underline{\text{locally compact }}X, \\ & \text{if all supspace of } X \text{ of card.} < \kappa \text{ are metrizable,} \\ & \text{then } X \text{ is also metrizable } \}; \\ \mathfrak{Refl}^* &= \min\{\kappa : \text{for all } \underline{\text{countably tight }}X, \\ & \text{if all supspace of } X \text{ of card.} < \kappa \text{ are metrizable,} \\ & \text{then } X \text{ is also metrizable } \}; \end{split}
```

 $ightharpoonup
angle_1 \leq \mathfrak{Refl} = \mathfrak{Refl}_{\mathsf{FRP}} \leq \mathfrak{Refl}^* \leq \omega_1$ -strongly compact cardinal

Open questions:

- \triangleright What is the possible value of \mathfrak{Refl}^* ? Can it be \aleph_1 ?
- \triangleright Can $\Re \mathfrak{efl}$ or $\Re \mathfrak{efl}^*$ be ω_1 -strongly compact?

Similar open problems on reflection numbers

- $\begin{array}{l} \blacktriangleright \ \, \aleph_1 \leq \mathfrak{Refl} \leq \mathfrak{Refl}_{\textit{Rado}} \leq \mathfrak{Refl}_{\textit{Galvin}} \\ \leq \mathfrak{Refl}_{\textit{chr}} \leq \omega_1\text{-strongly compact cardinal} \end{array}$
- For the definition of these cardinals see e.g.
 http://kurt.scitec.kobe-u.ac.jp/~fuchino/slides/wien12-06-22-pf.pdf
- ▶ $\Re \mathfrak{fl}_{Rado} = \aleph_1$ is Rado Conjecture proved to be consistent (modulo some large cardinals) by S. Todorčević.
- ▶ $\beth_{\omega} \le Refl_{chr}$ (Erdő and Hajnal, 1968)
- ho $\mathfrak{Refl}_{Galvin} = \aleph_1$ is Galvin Conjecture status: open.
- \triangleright Is there any relationship between \mathfrak{Refl}_{Rado} , \mathfrak{Refl}_{Galvin} , \mathfrak{Refl}^* ?

Sketch of the proof of Theorem 2

Theorem 2. (A. Hajnal and I. Juhász, 1976)

For any uncountable cardinal κ there is a non-metrizable space X s.t. all subspaces Y of X of cardinality $< \kappa$ are metrizable.

Proof. For every cardinal $\kappa' \geq \kappa$ of uncountable cofinality, $(\kappa' + 1, \mathcal{O})$ with $\mathcal{O} = \mathcal{P}(\kappa') \cup \{(\kappa' \setminus x) \cup \{\kappa'\} : x \in [\kappa']^{<\kappa'}\}$ is such a space:

- \blacktriangleright Any subspace of size $<\kappa'$ is discrete and hence metrizable.
- $ightharpoonup \kappa' + 1$ itself is not metrizable since κ' has character $\geq \kappa' > \aleph_0$. \square

Fodor-type reflection principle (FRP)

(FRP):

For any regular uncountable λ and any stationary $S \subseteq E_{\omega}^{\lambda} = \{\alpha < \lambda : \operatorname{cf}(\alpha) = \omega\}$ and any mapping $g: S \to [\lambda]^{\leq \aleph_0}$ there is $I \in [\lambda]^{\aleph_1}$ (a reflection point of g) s.t.

- (1) $cf(I) = \omega_1$;
- (2) $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- (3) for any regressive $f: S \cap I \to \lambda$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \lambda$ s.t. $f^{-1}''\{\xi^*\}$ is stationary in sup(I).

Left-separated topological spaces

A topological space X is **left-separated** if there is a well-ordering < of X s.t. all initial segments of X w.r.t. < are closed subsets of X.

meta-Lidelöf, and collectionwise Hausdorff spaces

A topological space X is said to be **meta-Lindelöf** if every open cover of X has an open refinement which is point countable.

back

 T_1 space is **collectionwise Hausdorff** if, for any closed and discrete $D \subseteq X$, there is a family \mathcal{U} of pairwise disjoint open sets which simultaneously separates D, that is, for all $d \in D$, there is $U \in \mathcal{U}$ with $D \cap U = \{d\}$.

$ADS^-(\lambda)$

For $X \subseteq \lambda$, $g: X \to [\lambda]^{\aleph_0}$ is a **ladder system** if $otp(g(\alpha)) = \omega$ and $g(\alpha)$ is a cofinal subset of α for all $\alpha \in X$.

back

 $g: X \to \mathcal{P}(Y)$ is **essentially disjoint** if there is $h: X \to [Y]^{<\aleph_0}$ s.t. $g(x) \setminus h(x)$, $x \in X$ are pairwise disjoint.

ω_1 -strongly compact cardinal

A cardinal κ is ω_1 -strongly compact if it is the smallest κ with the property that, for any $\mathcal{L}_{\omega_1,\omega}$ theory T if all subtheories of T of cardinality $<\kappa$ are satisfiable (i.e. T is $<\kappa$ -satisfiable) then T itself is satisfiable.

Countable tightness

A topological space X is **countably tight** if, for any $x \in X$ and $Y \subseteq X$ with $x \in \overline{Y}$, there is $Y' \in [Y]^{\leq \aleph_0}$ s.t. $x \in \overline{Y'}$.