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COVERING PROPERTIES OF INVERSE LIMITS, II

KEIKO CHIBA AND YUKINOBU YAJIMA

Throughout this report, all spaces are topological spaces without any separation
axiom, and all maps are continuous. For an inverse system {Xa,wg,A} and its
limit X, let A be a directed set with an order < and its cardinality A, where A > w,
and let 7, be the projection from X into X, for each a € A.

1. KNOWN RESULTS AND (QQUSETIONS

The following result of Beslagi¢ is a motivation of the study for the covering
properties of inverse limits.

Theorem 1.1 [Be] (see [C1]). Let X = [[,cr Xa be a product space such that
[locr Xo is normal for each finite F C I'. Then X is normal if and only if it is
A-paracompact, where X is the cardinality of T

However, the “if” part of Theorem 1.1 had been already extended by Aoki:

Theorem 1.2 [A]. Let {X,, 7§, A} be an inverse system and X its inverse limit
with each projection w, being a pseudo-open map. Suppose that X is \-paracompact.
If each X, is normal, then so is X.

These results lead us to consider the following general statement:

Statement (x). Let P be a topological property. Let {Xo, 7§, A} be an inverse
system and X its inverse limit with each projection w, being a pseudo-open map.
Suppose that X is A-paracompact. If each X, is P, then so is X.

Aoki and Chiba proved many results for P being several covering properties and
some other separation properties in the Statement (x) as follows.

Theorem 1.3 [A, C2, C4]. Let {X,, 7§, A} be an inverse system and X its inverse
limit with each projection 7, being a pseudo-open map. Suppose that X is A-
paracompact. If each X, satisfies one of the following properties, then X has the
corresponding property.

(1) Paracompactness.

(2) Collectionwise normality.

(3) Subparacompactness.

(4) Metacompactness.

(5) Submetacompactness (= 0-refinability).
(6) Subnormality.

Moreover, we can consider another general statement:
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2 KEIKO CHIBA AND YUKINOBU YAJIMA

Statement (xx). Let P be a topological property. Let {Xa,ﬂg,/\} be an inverse
system and X its inverse limit. Suppose that X is hereditarily A-paracompact. If
each X, is hereditarily P, then so is X.

Chiba also proved a similar result to Theorem 1.3 for the Statement (xx) as
follows.

Theorem 1.4 [C2, C4]. Let {Xq, 7§, A} be an inverse system and X its inverse
limit. Suppose that X is hereditarily A-paracompact. If each X, satisfies one of the
following properties, then X has the corresponding property.

(0) Hereditary normality.

(1) Hereditary paracompactness.

(2) Hereditary collectionwise normality.

(3) Hereditary subparacompactness.

(4) Hereditary metacompactness.

(5) Hereditary submetacompactness (= hereditary 0-refinability).
(6) Hereditary subnormality.

The purpose of this study is to prove that Theorems 1.3 and 1.4 hold for all main
covering properties and all main separation properties. From this point of view, it
is natural to raise the following three questions:

Question 1 [C4]. (i) Does Theorem 1.3 hold for d6-refinability?
(ii) Does Theorem 1.4 hold for hereditary d6-refinability?

Question 2 [C4]. (i) Does Theorem 1.3 hold for collectionwise §-normality?
(ii) Does Theorem 1.4 hold for hereditary collectionwise d-normality?

Question 3 [C4]. (i) Does Theorem 1.3 hold for collectionwise subnormality?
(ii) Does Theorem 1.4 hold for hereditary collectionwise subnormality?

As a partial answer of Question 1 (i), Chiba obtained

Theorem 1.5 [C3, C4]. Let {X,, 7§, A} be an inverse system and X its inverse
limit with each projection m, being a pseudo-open map. Suppose that X is A-
paracompact.

(1) If each X, is normal and §0-refinable, then X is §0-refinable.
(2) If each X, is 00-refinable and A is countable, then X is 0-refinable.

Remark. It should be noted that a certain assumption of X such as A-paracompact-
ness seems to be always necessary to consider the covering properties of inverse
limits. In fact, the product w*? of uncountably many copies of w (= the countable
infinite discrete space) is the limit of an inverse system of discrete spaces with
each projection being open. However, w*! is not countably paracompact and not
subnormal and it is not even weakly d6-refinable (see [CGP, 11.4]).

2. 00-REFINABILITY AND WEAK 6-REFINABILITY

A map f from X onto Y is pseudo-open if y € Int f(U) holds for each y € Y and
each open set U in X with f~!(y) C U. Note that both open and onto maps and
closed and onto maps are pseudo-open.

A space X is A-paracompact if every open cover of X with cardinality < A has

a locally finite open refinement. A cover A of a space X is directed if for any
Ag, A1 € A, there is A; € A with Ag U A; C As.
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Lemma 2.1 [M]. A space X is A-paracompact if and only if for every directed open
cover U of X with cardinality < X, there is a locally finite open cover V of X such
that {V:V € V} refines U.

Recall that a space X is weakly 6-refinable (respectively, weakly 60-refinable)
if for every open cover U of X, there is an open refinement J, ., V» of U such
that for each x € X one can find n, € w with ord(z,V,,) = 1 (respectively,
1 <ord(z,Vp,) <w).

Before we consider the Qustion 1 (i), we should also consider the following similar
question:

Question 1’. Does Theorem 1.3 hold for weak 6-refinability or weak §6-refinability 7l
First, we can obtain an affirmative answer to this question as follows.

Theorem 2.2. Let {Xa,ﬂg, A} be an inverse system and X its inverse limit with
each projection m, being a pseudo-open map. Suppose that X is A-paracompact. If
each X, is weakly 0-refinable (weakly 60-refinable), then so is X.

Next, we proceed to consider the Question 1 (i). For that, the following concept
plays an important role.

A space X is A-subparacompact if every open cover of X with cardinality < A has
a o-locally finite closed refinement. Let X be a space and V a collection of subsets
in X. For each x € X, we denote by ord(x, V) the cardinality of {V € V: x € V}.

Lemma 2.3 [B1, B2]. For a space X, the following are equivalent.

(a) X is A-subparacompact.

(b) Ewvery open cover of X with cardinality < X\ has a o-discrete closed refine-
ment.

(¢) Every open cover of X with cardinality < X has a o-closure-preserving closed
refinement.

(d) For every open cover U of X with cardinality < X\, there is a sequence {V,,}
of open refinements of U such that for each x € X one can find n, € w with
ord(z,V,,) = 1.

Remark. As is well-known, paracompactness implies subparacompactness. How-
ever, for each A > w, A\-paracompactness does not imply A-subparacompactness. In
fact, let X\ = AT x (At 4+ 1). Since X is the product of a A-paracompact space
and a compact space, it is A-paracompact. However, X is not subnormal (because,
by the pressing down lemma, {(o,a) € X : o € AT} and AT x {AT} cannot be
separated by disjoint Gs-sets). Since every w-subparacompact space is subnormal,
X, is not w-subparacompact, hence not A-subparacompact.

A space X is subnormal if for any disjoint closed sets A and B in X, there
are disjoint Ggs-sets G and H such that A C B and B C H. Note that X is
subnormal if and only if every finite (or binary) open cover of X has a countable
closed refinement.

Lemma 2.4. Fvery \-paracompact and subnormal space is A-subparacompact.

A space X is d0-refinable (= submetaLindeldf) if for every open cover U of X,
there is a sequence {V,,} of open refinements of U such that for each x € X one can
find n, € w with ord(x,V,_) < w.
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Using above lemmas, we can obtain a partial answer to the Question 1 (i). This
is also a generalization of [C4, Theorem 1 (i)].

Theorem 2.5. Let {X,, 7§, A} be an inverse system and X its inverse limit with
each projection my being a pseudo-open map. Suppose that X is A-paracompact and
subnormal. If each X, is 60-refinable, then so is X.

Theorems 1.3 (6) and 2.6 immediately yield

Corollary 2.6. Let {X,, 3, A} be an inverse system and X its inverse limit with
each projection 7, being a pseudo-open map. Suppose that X is A\-paracompact. If
each X, is 60-refinable and subnormal, then so is X.

3. COLLECTIONWISE §-NORMALITY AND COLLECTIONWISE SUBNORMALITY

A space X is collectionwise 6-normal if for every discrete collection {C¢: £ € E}
of subsets in X, there is a disjoint collection {U¢: { € E} of Gs-sets in X such
that C¢ C U for each £ € 5. It is clear that every collectionwise d-normal space is
subnormal.

The following is an affirmative answer to the Question 2 (i) (= [C4, Question
3)).

Theorem 3.1. Let {Xa,ﬂ'g, A} be an inverse system and X its inverse limit with

each projection m, being a pseudo-open map. Suppose that X is A\-paracompact. If
each X, is collectionwise d-normal, then so is X.

A space X is collectionwise subnormal (= discretely subexpandable) if for every
discrete collection {C¢: £ € =} of subsets in X, there is a sequence U,, = {Ug ,: § €
=}, n € w, of collections of open sets in X such that C¢ C Ug ,, for each £ € = and
each n € w, and for each z € X, one can find n, € w with ord(z,U,,) < 1.

Note that every subparacompact space is collectionwise subnormal and that ev-
ery collectionwise subnormal space is collectionwise d-normal.

The following is an affirmative answer to Question 3 (i) (= [C4, Question 2]).

Theorem 3.2. Let {Xa,ﬂg, A} be an inverse system and X its inverse limit with
each projection m, being a pseudo-open map. Suppose that X is A-paracompact. If
each X, 1s collectionwise subnormal, then so is X.

Remark. Recall that a space X is finitely subparacompact if every finite open cover
of X has a o-discrete closed refinement, and that a space X is boundedly subez-
pandable if X is collectionwise subnormal (= discretely subexpandable) and finitely
subparacompact (see [K]). However, note that finite subparacompactness is equiv-
alent to subnormality, and that collectionwise subnormality implies subnormality.
Hence collectionwise subnormality is exactly equivalent to bounded subexpandabil-
ity. So [C4, Theorem 1 (vii)] would be an affirmative answer to our Question 3 (=
[C4, Question 2]) if the proof would be correct. However, there is a gap in the proof
of [C4, Theorem 1 (vii)] (more precisely, the part of “Proof of (1)” is not correct).
Consequently, we can consider our proof of Theorem 3.2, which is omitted here, as
a correct one of [C4, Theorem 1 (vii)].

4. HEREDITARILY SUBNORMALITY AND RELATED PROPERTIES

Recall that a space X is hereditarily subnormal if every subspace of X is sub-
normal. Note that X is hereditarily subnormal if and only if every open subspace
of X is subnormal.
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The former part of the following was actually stated in [C4] without proof.

Proposition 4.1 [C4]. Let {Xo, 75, A} be an inverse system and X its inverse
limit. Let G be an open set of X. Suppose that G is either \-paracompact or
A-subparacompact. If each X, is hereditarily subnormal, then G is subnormal.

Recall that a space X is hereditarily 60-refinable if every (open) subspace of X
is df-refinable.
The following is a partial answer to Question 1 (ii).

Theorem 4.2. Let {Xa,wg‘,A} be an inverse system and X its inverse limit. Let
G be \-subparacompact open subspace of X. If each X, is hereditarily 60-refinable,
then G is §0-refinable.

We also obtain a generalization of [C3, Theorem 2] as follows.

Proposition 4.3. Let {X,,, 7}, w} be an inverse sequence and X its inverse limit.
Let G be a countably metacompact open subspace of X. If each X, is hereditarily
00-refinable, then G is d0-refinable.

A space X is hereditarily collectionwise §-normal if every subspace of X is col-
lectionwise d-normal.

Theorem 4.4. Let {X,, g, A} be an inverse system and X its inverse limit. Let G
be a \-subparacompact open subspace of X. If each X, is hereditarily collectionwise
d-normal, then G is collectionwise d-normal.

Note that a space X is hereditarily collectionwise §-normal if and only if every
open subspace of X is collectionwise d-normal. Thus Lemma 2.4, Proposition 4.1
and Theorem 4.4 immediately yield an affirmative answer to Question 2 (ii) (= [C4,
Question 6]):

Corollary 4.5. Let {X,, g, A} be an inverse system and X its inverse limit. Sup-
pose that X is hereditarily A-paracompact. If each X is hereditarily collectionwise
d-normal, then so is X.

Recall that a space X is hereditarily collectionwise subnormal if every subspace
of X is collectionwise subnormal.

The following gives an affirmative answer to Question 3 (ii).

Theorem 4.6. Let {X,, 3, A} be an inverse system and X its inverse limit. Let G
be a A-subparacompact open subspace of X. If each X, is hereditarily collectionwise
subnormal, then G is collectionwise subnormal.

Since a space X is hereditarily collectionwise subnormal if and only if every
open subspace of X is collectionwise subnormal, Lemma 2.4, Proposition 4.1 and
Theorem 4.6 immediately yield an affirmative answer to Question 3 (ii) (= [C4,
Question 5]):

Corollary 4.7. Let {X,, T3, A} be an inverse system and X its inverse limit. Sup-
pose that X is hereditarily A-paracompact. If each X, is hereditarily collectionwise
subnormal, then so is X.
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5. HEREDITARILY SUBPARACOMPACTNESS
AND HEREDITARILY SUBMETACOMPACTNESS

We begin with the hereditary subparacompact case:

Proposition 5.1. Let {meg,/\} be an inverse system and X its inverse limit.
Let G be a \-subparacompact open subspace of X. If each X, is hereditarily sub-
paracompact, then G is subparacompact.

For the hereditary submetacompact case, we need the following lemma.

Lemma 5.2 [GY]. There is a filter F on w satisfying: For every submetacompact
space X and every open cover U of X, there is a sequence {Vy,,} of open refinements
of U such that for each x € X, {n € w:ord(z,V,) <w} € F.

A space X is A-submetacompact if for every open cover U of X with cardinality
< ), there is a sequence {V, } of open refinements of U such that for each x € X
one can find n, € w with ord(x,V,,) < w. Clearly, A-subparacompactness implies
A-submetacompactness.

Theorem 5.3. Let {Xa,wg,A} be an inverse system and X its inverse limit. Let
G be a A\-submetacompact open subspace of X. If each X, is hereditarily submeta-
compact, then G is submetacompact.

A space X is A-metacompact if every open cover of X with cardinality < A has a
point-finite open refinement. Clearly, A-metacompactness implies A-submetacompactness.|j

Proposition 5.4. Let {Xa,ﬂ'g,A} be an inverse system and X its inverse limit.
Let G be a A-metacompact open subspace of X. If each X, is hereditarily meta-
compact, then G is metacompact.

A space X is A-weakly 0-refinable if for every open cover U of X with cardinality
< A, there is an open refinement | J,,.,, Vo of U such that for each € X one can
find n, € w with ord(x, V), ) = 1. Similarly, we have

Proposition 5.5. Let {XaﬂrgﬂA} be an inverse system and X its inverse limit.
Let G be a A-weakly 0-refinable open subspace of X. If each X, is hereditarily
weakly O-refinable, then G is weakly 0-refinable.
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TOPOLOGICAL SEQUENCE ENTROPY OF MONOTONE MAPS
ON ONE-DIMENSIONAL CONTINUA

NAOTSUGU CHINEN

ABSTRACT. Let X be either a dendrite or a graph and f a monotone map from
X to itself. The main result is that every topological sequence entropy of f
respect to every sequence S is zero. This implies that the topological entropy
of f is equal to zero.

1. INTRODUCTION.

Let f be a continuous map from a continuum X to itself. We denote the n-fold
composition ™ of f with itself by fo---of and f° the identity map. Let us denote
f7U(Y) the ith inverse image of an arbitrary set Y C X.

T. N. T. Goodman introduced in [G] the notion of topological sequence entropy
as an extension of the concept to topological entropy. Let f be a continuous map
from a compact metric space X to itself and A, B finite open covers of X. Denote
{f7™(A)|A € A} by f~™(A) for each positive integer m, AV B = {ANBJA €
A, B € B} and N(A) denotes the minimal possible cardinality of a subcover chosen
from A. Let S = {s;]i = 1,2,...} be an increasing unbounded sequence of positive
integers. We define the topological sequence entropy of f relative to a finite open
cover A of X (respect to the sequence S) as

n—1

hs(f,A) = limsupglogN(\/ 7 (A).

n—oo i=1
And we define the topological sequence entropy of f (respect to the sequence S) as
hs(f) =sup{hs(f,A)|A is a finite open cover of X}.

If s; = i for each 4, then hg(f) is equal to the standard topological entropy h(f)
of f introduced by Adler, Konheim and McAndrew in [AKM]. And set

oo (£) = sup his (f).

If X is a compact interval or the circle, in [FS] and [H] it was proved that f is
chaotic in the sense of Li and Yoke if and only if ho(f) > 0. If f:[0,1] — [0,1]
is piecewise monotonic, Cdnovas proved in [C1] that f is chaotic of type 2°° if and
only if hoo(f) = log2, and that f is chaotic of type greater than 2°° if and only if

heo (f) = 0.

2000 Mathematics Subject Classification. Primary 37B40, 37E10; Secondary 28D05, 54H20.
Key words and phrases. Topological sequence entropy ; regular continuum ; dendrite ; graph.
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The mesh of an open cover A of X is the supremum of the diameter of the
elements of A, denoted by meshA. For an open cover A of X, we set BAd(A) =
U{Bd(A)|A € A}, where BA(Y) denotes the boundary of Y in X. A continuum X
is said to be regular if for each € > 0, there exists a finite open cover A of X with
meshA < e such that Bd(A) is finite. A locally connected continuum is said to be
a dendrite if it contains no simple closed curve. See [N] for dendrites. It is known
that all dendrites and all graphs are regular.

Seidler proved in [S] the following theorem.

Theorem 1.1. If f is a homeomorphism from a reqular continuum X into itself,
then the topological entropy h(f) of f is equal to zero.

This implies that if X is either a dendrite or a graph, then A(f) = 0 for all
homeomorphism f: X — X.

A continuous map f : X — X is said to be monotone if f~1(Y) is connected
for each connected subset Y of f(X). It is well known that f™ is monotone for
each positive integer n if f is monotone. It follows from [KS, Theorem D] that if
X is either a compact interval or the circle, then hoo(f) = 0 for all monotone map
f: X — X. And Efremova and Markhrova in [EM] considered some class D of
dendrites and showed that the topological entropy h(f) of f is equal to zero for all
monotone map f from X € D to itself. It is known from [BC] that h(f) = h(f|acs))
for all continuous map f from a compact space to itself, where Q(f) denotes the
non-wandering set of f. In fact, it is proved in [EM] that h(f|os)) = 0 for all
monotone map f from X € D to itself. But by [C2], there exists a continuous map
f:10,1] — [0,1] such that hs(f) > hs(fla(s)) for a suitable sequence S of positive
integers. This shows that the topological sequence entropy is different from the
topological entropy.

We show the following theorem which is an extension of [KS, Theorem D] and
[EM, Theorem B(B4)].

Theorem 1.2. Let X be either a dendrite or a graph and f a monotone map from
X into itself. Then hoo(f) = 0. In particular, the topological entropy of f is equal
to zero.

2. DEFINITIONS.

Definition 2.1. Let Y be a subspace of a metric space X. Cl(Y) and diamY
denote the closure and the diameter of Y in a space X, respectively.
The cardinality of a set P will be denoted by Card(P).

Definition 2.2. We say that a cover B is finer than a cover A, and write B > A if
each B € B is contained in some A € A. Clearly, if B > A, then \/;_, f~5(B) >
Vi, f~%(A) for any finite sequence s1, s, ..., s, of positive integers, and N (B) >
N(A).

Definition 2.3. Let f be a continuous map from a continuum X to itself and n a
positive integer. Denote Dy, = {z € X|Card(f " (x)) <1} and Dy = (\o—; Df.p.
Since Dy, is a Gs set for each n, we see that D is so. A continuum X is said
to be regular for f if for each € > 0 there exists a finite open cover A of X with
meshA < e such that Bd(A) is finite contained in Dy for each A € A.
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3. ELEMENTARY LEMMAS.

Lemma 3.1. Let f be a continuous map from a continuum X to itself, S = {s;|i =
1,2,...} an increasing unbounded sequence of positive integers and { A} a sequence
of finite open covers of X with lim,,_,o, mesh(A,) =0 and A1 > A, for all n.
Then hs(f) = lim, oo hs(f, Ar).

Corollary 3.2. Let f be a continuous map from a continuum X to itself, S =
{silt = 1,2,...} an increasing unbounded sequence of positive integers. If for each
€ > 0 there exists a finite open cover of X with meshA < e and hg(f, A) = 0, then

hs(f) = 0.

Lemma 3.3. Let f be a continuous map from a continuum X to itself, n a pos-
itive integer, A an open cover of X with Card(A) > 2, s1,89,...,8,-1 G Se-
quence of positive integers and B a subcover of \/?:_11 f7%(A). Then Bd(B) C
n—1 p_g.

Bd(U;Z, f*(A)).

Lemma 3.4. Let f be a continuous map from a continuum X to itself and A a
finite open cover of X with Card(A) > 2 such that BA(A) is finite contained in
Dy. Andlet La = Y 4o Card(Bd(A)). Then N(Vi=,' f~*(A)) < nLa for any
sequence 81,82, ...,S,_1 of positive integers.

Lemma 3.5. Let f be a monotone map from a reqular continuum X to itself. Then
Dy is a Gs dense set in X.

4. A PROOF OF THEOREM 1.2.

Theorem 4.1. Let f be a monotone map from X into itself. If X is regular for
f, then hoo(f) = 0. In particularly, h(f) = 0.

Corollary 4.2. Let f be a continuous map from a regular continuum X to itself.
If f is embedding, then ho(f) = 0.

Proof of Theorem 1.2. Let X be a dendrite or a graph and f a monotone map
from X to itself. Lemma 3.5 implies D¢ is a G5 dense set. Let € > 0. Since X is a
dendrite or a graph, there exists a finite set /' C Dy such that diamB < 1/2¢ for all
B € B, where B is the set of all components of X \ F'. Set A, = |J{{z}UB|B B
and z € CI(B)} for each v € F and A = {A;|x € F}. We see that A is a finite
open cover of X with meshA < ¢ such that Bd(A) C F' C Dy. This shows that X
is regular for f. It follows from Theorem 4.1 that heo(f) = 0. |

From the proof of Theorem 1.2, we have the following corollary.

Corollary 4.3. Let f be a continuous map from a regular continuum X to itself.
If for each € > 0 there exists a finite subset F' of Df such that diamB < ¢ for all
component B of X \ F, then h(f) = 0.
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All group topologies in this paper are considered to be Hausdorff (and thus
Tychonoff). Recall that a topological space X is:

Lindeldf if every open cover of X has a countable subcover,

(countably) compact if every (countable) open cover of X has a finite subcover,

pseudocompact if every real-valued continuous function defined on X is bounded,
and

separable if X has a countable dense subset.

It is well-known that compact — countably compact — pseudocompact, and
“pseudocompact + Lindel6f” < compact.

Recall that a topological group G is precompact, or totally bounded, if G is
(topologically and algebraically isomorphic to) a subgroup of some compact group.
Pseudocompact groups are precompact [7], so we have a somewhat longer chain

compact — countably compact — pseudocompact — precompact

of compactness-like conditions for topological groups.

A space X is called hereditarily separable if every subspace of X is separable (in
the subspace topology), and X is said to be hereditarily Lindeldf if every subspace
of X is Lindeldf (in the subspace topology). An S-space is a hereditarily separable
regular space that is not Lindelof.

1. MOTIVATION

Our results originate in three diverse areas of mathematics.

The first source of inspiration comes from the celebrated theory of S-spaces
in set-theoretic topology, and especially, a famous 1975 example of Fedorcuk of
a hereditarily separable compact space of size 2°. In our paper we completely
characterize Abelian groups that admit a group topology making them into an S-
space, and we produce the “best possible analogues” of the Fedorc¢uk space in the
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category of topological groups. As it turns out, a vast majority of Abelian groups
admit group topologies with properties similar to that of the Fedoréuk example.

The second origin lies in topological algebra, where we were motivated by the
problem of which Abelian groups admit a countably compact group topology. We
completely describe, albeit consistently, the algebraic structure of Abelian groups
of size at most 2° that admit a countably compact group topology.

Our third motivation comes from the theory of cardinal invariants in general
topology. We resolve completely a 1980 problem of van Douwen about the cofinality
of |G| for a countably compact group G in the case of Abelian groups.

We will now address all three sources of our motivation in detail.

1.1. S-GrouUPS A LA FEDORCUK. Recall that |Y| < ¢ for a hereditarily Lindel6f
Hausdorff space Y [1], and |X| < 2¢ for a separable Hausdorff space X [32]. It
is natural to ask whether the last inequality can be strengthened to |X| < ¢ for
a hereditarily separable regular space X. If there are no S-spaces, then every
hereditarily separable regular space X is hereditarily Lindel6f, and therefore | X| < ¢
by the result cited above. Todor¢evié¢ has proved the consistency with ZFC that
S-spaces do not exist ([40], see also [41]). Therefore, in Todorcevié’s model of ZFC,
hereditarily separable regular spaces have size at most ¢. A first consistent example
of a hereditarily separable Tychonoff space of size 2¢ has been found by Hajnal and
Juhész [20]. Two years later Fedorcuk [17] produced the strongest known example
up to date using his celebrated inverse spectra with fully closed maps (see also [18]):

Example 1.1. The existence of the following “Fedorcuk space” X is consistent
with ZFC plus CH:

(i) |X| = 2¢,

(ii) X is hereditarily separable,

(iii) X is compact, and

(iv) if F' is an infinite closed subset of X, then |F| = | X|; in particular, X does
not contain non-trivial convergent sequences.

The main goal of this paper is to address the question of the existence of “Fe-
dorcuk space” in the context of topological groups. That is, given a group G, we
wonder if it is possible to find a hereditarily separable Hausdorff group topology on
G having properties that “Fedorcuk space” has. Since we want to get a hereditarily
separable topology on GG, we have to restrict ourselves to groups G of size at most
2¢. Onme naturally expects that the presence of algebra may produce additional
restrictions on how good a Fedorcuk type group can be. And this is indeed the
case.

First of all, one is forced to relax somewhat the compactness condition from item
(iii) of Example 1.1 because of two fundamental facts about compact groups:

Fact 1.2. (i) Infinite compact groups contain non-trivial convergent sequences.
(ii) Compact hereditarily separable groups are metrizable.

Both facts are folklore and follow from the following result of Hagler, Gerlits and
Efimov: An infinite compact group G contains a copy of the Cantor cube {0, 1}*(%),
where w(G) is the weight of G. An elementary proof of this theorem, together with
some historical discussion, can be found in [35].

Recall that a space X is initially wy-compact if every open cover of size < w; has
a finite subcover. Item (i) of Fact 1.2 is no longer valid, at least consistently, if one
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replaces “compact” by “initially wi-compact” in it: It is consistent with ZFC that
there exists an initially w;-compact Hausdorff group topology without non-trivial
convergent sequences on the free Abelian group of size ¢. This result is announced,
with a hint at a proof, in [42].

However, item (ii) of Fact 1.2 remains valid if one replaces “compact” by “initially
wi-compact” in it, see [2]. This means that countable compactness appears to be the
strongest compactness type property among weakenings of classical compactness for
which one may hope to obtain hereditarily separable group topologies, and indeed,
consistent examples of hereditarily separable countably compact groups (without
non-trivial convergent sequences) are known in the literature [21, 38, 28]. This
perfectly justifies countable compactness as our strongest compactness condition of
choice when working with hereditarily separable groups.

Second, we will have to restrict ourselves to Abelian groups because in the non-
commutative case there are groups (of small size) that do not admit any countably
compact or separable group topology, as follows from our next result:

Proposition 1.3. Let X be a set and S(X) the symmetric group of X.' Then:
(i) S(X) does not admit a separable group topology unless X is countable,
(i) S(X) admits no countably compact group topology when X is infinite, and
(iii) S(X) does not admit a Lindeldf group topology unless X is countable.

Proof. We equip S(X) with the topology of pointwise convergence on X, i.e. the
topology 7, generated by the family {U(f,F) : f € S(X),F € [X]<“} as a base,
where U(f,F) = {g € S(X) : g(z) = f(x) for all z € F}. It is easy to see that 7,
is a group topology.

Assume that X is an infinite set. For a fixed z € X, the stabilizer S, = {0 €
S(X):o(x) =a} = U(idx, {x}) of x is a Tp-open subgroup of S(X) of index | X|,
and hence it produces an open cover of S(X) by pairwise disjoint sets (obtained by
taking appropriate unions of cosets of S;) without a subcover of size (strictly) less
than |X|. It follows that the space (S(X),7,) is not countably compact, and also
is neither separable nor Lindelof when |X| > w.

It is known that 7, is a minimal element in the lattice of all (Hausdorff) group
topologies on S(X), i.e. 7, C 7 for every (Hausdorff) group topology 7 on S(X)
[19]. This easily yields the conclusion of all three items of our proposition. O

It follows from the above proposition that, for an uncountable set X, the symmet-
ric group S(X) admits neither a separable, nor a countably compact, nor a Lindelof
group topology.2 Furthermore, free groups never admit countably compact group
topologies ([10, Theorem 4.7]; see also [12, Corollary 5.14]).

Third, algebraic restrictions prevent us from getting the full strength of item
(iv), as our next example demonstrates:

IThat is, S(X) is a set of bijections of X onto itself with the composition of maps as
multiplication.

2In particular, no group S(X) admits a Hausdorff group topology that makes it into an S-
space. This should be compared with substantial difficulties one has to overcome to produce a
model of ZFC in which there are no S-spaces. Furthermore, no group S(X) admits a Hausdorff
group topology that makes it into an L-space (i.e., a hereditarily Lindel6f but not (hereditarily)
separable space). This should be compared with the fact that the consistency of the non-existence
of L-spaces is a well-known problem of set-theoretic topology that remains unresolved.
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Example 1.4. Let G = Z(2)(®) @ Z?") be the direct sum of the Boolean group
7(2)() of size ¢ and the free Abelian group Z(2°) of size 2°. We claim that, for
any Hausdorff group topology on G, there exists a closed (in this topology) infinite
set F such that |F| < |G|. In fact, F = 7Z(2)(9 C G is such a set. Indeed,
|F| = ¢ < 2° = |G|, so it remains only to note that F' is an unconditionally closed
subset of G in Markov’s sense [31]; that is, F' is closed in every Hausdorff group
topology on G. The latter follows from the fact that F' = {x € G : 2z = 0} is the
preimage of the (closed!) set {0} under the continuous map that sends = to 2z.

We note that our Theorem 2.7 implies that, in an appropriate model of ZFC,
the group G from the example above does admit a hereditarily separable countably
compact group topology without non-trivial convergent sequences. So the best we
can hope for in our quest for Fedorcuk type group G is to require that G satisfies
the second, weaker, condition from item (iv) of Example 1.1, i.e. that G does not
have any non-trivial convergent sequences. In fact, we will manage to get a stronger
condition: G does not have infinite compact subsets.

1.2. ALGEBRAIC STRUCTURE OF COUNTABLY COMPACT ABELIAN GROUPS. Hal-
mos [22] showed that the additive group of real numbers can be equipped with
a compact group topology and asked which Abelian groups admit compact group
topologies. Halmos’ problem seeking a complete description of the algebraic struc-
ture of compact Abelian groups contributed substantially to the development of
the Abelian group theory, particularly through the introduction of the algebraically
compact groups by Kaplansky [26]. This problem has been completely solved in
23, 24].

The counterpart of Halmos’ problem for pseudocompact groups asking which
Abelian groups can be equipped with a pseudocompact group topology was attacked
in [3, 10, 11, 4, 5, 12] and the significant progress has been summarized in the
monograph [12]. Recall also that every Abelian group admits a precompact group
topology [6].

The question of which Abelian groups admit a countably compact group topology
appears to be much more complicated. After a series of scattered results [21, 15, 38,
28, 13, 43] a complete description of the algebraic structure of countably compact
Abelian groups of size at most ¢ under Martin’s Axiom MA has been recently
obtained in [14]: MA implies that an Abelian group G of size at most ¢ admits
a countably compact group topology if and only if it satisfies both PS and CC,
two conditions introduced in Definition 2.3 below. (In particular, every torsion-free
Abelian group of size ¢ admits a countably compact group topology under MA
[39].) In our Theorem 2.7 and Corollary 2.17(ii) we substantially extend this result
by proving that, at least consistently, the conjunction of PS and CC is both a
necessary and a sufficient condition for the existence of a countably compact group
topology on an Abelian group G of size at most 2¢. Moreover, we get both hereditary
separability and absence of infinite compact subsets for our group topology as a
bonus.

This “jump” from ¢ to 2¢ is an essential step forward. Indeed, amazingly little
is presently known about the existence of countably compact group topologies on
groups of cardinality greater than c¢. Using a standard closing-off argument van
Douwen [16] showed that every infinite Boolean group of size £ = k“ admits a
countably compact group topology and his argument can easily be extended to
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Abelian groups of prime exponent. It is consistent with ZFC that the Boolean
group of size x has a countably compact group topology provided that ¢ < x < 2¢
[44]. (Here 2¢ can be made “arbitrary large”.) It is also consistent with ZFC that
the free Abelian group of size k has a countably compact group topology provided
that ¢ < k = k¥ < 2° [27]. Finally, it is well-understood which Abelian groups
admit compact group topologies. Essentially these are the only known results in
the literature about the existence of countably compact group topologies on groups
of cardinality greater than ¢ (even without the additional requirement of hereditary
separability).

While the algebraic description of Abelian groups admitting either a compact
or a pseudocompact group topology can be carried out without any additional
set-theoretic assumptions beyond ZFC, all known results about countably com-
pact topologizations described above have either been obtained by means of some
additional set-theoretic axioms (usually Continuum Hypothesis CH or versions of
Martin’s Axiom MA) or their consistency has been proved by forcing. Even the
fundamental question (raised in [38]) as to whether the free Abelian group of size
¢ admits a countably compact group topology is still open in ZFC. (Recall that no
free Abelian group admits a compact group topology.)

It seems worth noting a peculiar difference between compact and countably com-
pact topologizations of Abelian groups. In the compact case the sufficiency of the
algebraic conditions is relatively easy to prove, whereas their necessity is much
harder to establish. In the countably compact case the necessity of PS and CC is
immediate (see Lemma 2.5), while the sufficiency is rather complicated and at the
present stage requires additional set-theoretic assumptions.

1.3. VAN DOUWEN’S PROBLEM: Is |G| = |G|¥ FOR A COUNTABLY COMPACT
GROUP G? It is well-known that |G| = 2%(%) for an infinite compact group G,
where w(G) is the weight of G [25]. In particular, the cardinality |G| of an infinite
compact group G satisfies the equation |G| = |G|¥. This motivated van Douwen to
ask in [16] the following natural question: Does |G| = |G|%, or at least cf(|G|) > w,
hold for every infinite topological group (or homogeneous space) G which is count-
ably compact?

In the same paper [16] van Douwen proved that, under the Generalized Contin-
uum Hypothesis GCH, every infinite pseudocompact homogeneous space G satisfies
|G| = |G]¥. In particular, a strong positive answer (with countable compactness
weakened to pseudocompactness, and “topological group” weakened to “homoge-
neous space”) to van Douwen’s problem is consistent with ZFC. A first consistent
counter-example to van Douwen’s question was recently announced by Tomita [44]
who used forcing to construct a model of ZFC in which every Boolean group of size
k has a countably compact group topology provided that ¢ < k < 2¢ [44, Theorem
2.2]. Here 2° can be made “arbitrary large” so that, for any given ordinal o > 1
chosen in advance, one can arrange that ¢ < R, < 2¢ (in particular, X, can be
included in the interval between ¢ and 2°).

In our Corollary 2.23 we push Tomita’s negative solution to van Douwen’s ques-
tion to the extreme limit by demonstrating that, in a sense, the cofinality of |G| for
a countably compact Abelian group G is completely irrelevant: For every ordinal
o > 1 it is consistent with ZFC that every Abelian group G of size N, admits
a countably compact group topology provided that G satisfies PS and CC, two
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necessary conditions for the existence of such a topology on G (see Definition 2.3
and Lemma 2.5(ii)).

2. MAIN RESULTS

The major achievement of this paper is a forcing construction of a (class of) spe-
cial model(s) of ZFC in which Abelian groups of size at most 2¢ admit hereditarily
separable group topologies with various compactness-like properties and without
infinite compact subsets. Let us produce an outline of our construction.

We define, for every cardinal k > wy, a forcing notion (P, <) that depends only
on this cardinal k (thereby justifying the notation P.). Let M, be an arbitrary
countable transitive model of ZFC satisfying k € My, (Px,<) € My, ¢ = w; and
241 = k. If G C P, is a P,-generic set over M,,, then the generic extension M, [G]
has the same cardinals as M, and the equalities w; = ¢ and 2“* = 2° = k hold
in M,[G]. Since the original cardinal x can be taken to be “arbitrarily large”,
the power 2¢ of the continuum c¢ in the generic extension M[G] can also be made
“arbitrarily large”.

In all results below, M[G] will always denote the generic extension described
above.

Our first main result shows that, at least consistently, the inequality |G| < 2°
is the only necessary condition for the existence of a hereditarily separable group
topology on an Abelian group:

Theorem 2.1. In M;[G], the following conditions are equivalent for any Abelian
group G:

(i) G admits a separable group topology,

(i) G admits a hereditarily separable group topology,

(ii) G admits a hereditarily separable precompact group topology without infinite
compact subsets, and

(iv) |G| < 2.

Recall that Todorc¢evié constructed a model of ZFC in which S-spaces do not
exist ([40], see also [41]). Things change dramatically in this model:

Theorem 2.2. In any model of ZFC in which there are no S-spaces the following
conditions are equivalent for any Abelian group G:

(i) G admits a hereditarily separable group topology,

(i) G admits a separable metric precompact group topology, and

(ii) |G| < c.

We would like to emphasize that there are absolutely no algebraic restrictions
(except natural restriction of commutativity) on the group G in the above two the-
orems. Algebraic constraints become more prominent when one adds some com-
pactness condition to the mix.

Let G be an Abelian group. As usual 7(G) denotes the free rank of G. For every
natural number n > 1 define G[n] = {g € G : ng = 0} and nG = {ng : g € G}.
Recall that G is:

torsion provided that G = |J{G[n] : n € w\ {0}},
bounded torsion if G = G[n] for some n € w \ {0},
torsion-free if G[n] = {0} for every n € w \ {0}, and
divisible if mG = G for each m € w \ {0}.
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We will now introduce three algebraic conditions that will play a prominent role
throughout this paper.

Definition 2.3. For an Abelian group G, define the following three conditions:
PS: Either r(G) > ¢ or G is a bounded torsion group.
CC: For every pair of integers n > 1 and m > 1 the group mG[n] is either finite
or has size at least .
tCC: If G is torsion, then CC holds.

Our next lemma, despite its simplicity, is quite helpful for better understanding
of these conditions:

Lemma 2.4. Let G be an Abelian group.

(i) If G is torsion, then G satisfies PS if and only if G is a bounded torsion
group.

(ii) If G is a torsion-free group, then G satisfies PS if and only if |G| > ¢.

(1ii) If G is a torsion-free group, then G satisfies CC.

(iv) CC for G implies tCC.

(v) If G is not torsion, then G satisfies tCC.

(vi) If G is torsion and satisfies tCC, then G satisfies CC as well.

Proof. To prove (i) note that r(G) = 0 < ¢ if G is torsion.

(ii) If G is a torsion-free group, then condition PS for G becomes equivalent to
r(G) > ¢, and the latter condition is known to be equivalent to |G| > c.

(iii) Assume that G is torsion-free. Let n > 1 and m > 1 be natural numbers.
Then G[n] = {0} and hence mG[n] = {0} is finite. Therefore CC holds.

TItems (iv), (v) and (vi) are trivial. O

Condition PS is known to be necessary for the existence of a pseudocompact
group topology on an Abelian group G, thereby justifying its name (PS stands
for “pseudocompact”). To the best of the author’s knowledge, this fact has been
announced without proof in [3, Remark 2.17] and [10, Proposition 3.3], and has
appeared in print with full proof in [12, Theorem 3.8].

It can be easily seen that condition CC is necessary for the existence of a count-
ably compact group topology on an Abelian group G, thereby justifying its name
(CC stands for “countably compact”). Indeed, if G is a countably compact group,
then the set G[n] = {g € G : ng = 0} must be closed in G, and thus G[n] is count-
ably compact in the subspace topology induced on G[n] from G. Furthermore, the
map which sends g € G[n] to mg € mG|[n] is continuous, and so mG[n] must be
countably compact (in the subspace topology). It remains only to note that an
infinite countably compact group has size at least ¢ [16, Proposition 1.3 (a)]. In the
particular case when an Abelian group G has size ¢, the fact that CC is a necessary
condition for the existence of a countably compact group topology on G has been
proved in [14].

Condition CC has essentially appeared for the first time in [10] where it was
proved that CC is necessary for the existence of a pseudocompact group topology
on a torsion Abelian group.?® Since CC and tCC are equivalent for torsion groups
by items (v) and (vii) of Lemma 2.4, it follows that tCC is a necessary condition

3Furthermore, it is proved in [10] that CC is also a sufficient condition for the existence of a
pseudocompact group topology on a bounded torsion Abelian group of size at most 2°. See also
the proof of Theorem 2.22.
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for the existence of a pseudocompact group topology on a torsion group, thereby
justifying our choice of terminology (tCC stands for “torsion CC”). Since tCC
trivially holds for non-torsion groups (see item (vi) of Lemma 2.4), we conclude
that tCC is a necessary condition for the existence of a pseudocompact group
topology on an Abelian group G.

We can now summarize the discussion above in a convenient lemma:

Lemma 2.5. (i) A pseudocompact Abelian group G satisfies PS and tCC.
(i) A countably compact Abelian group G satisfies PS and CC.

In the “opposite direction”, it is known that the combination of PS and tCC
is sufficient for the existence of a pseudocompact group topology on an Abelian
group G of size at most 2¢ ([10]; see also [12]) and, under Martin’s Axiom MA, the
combination of PS and CC is sufficient for the existence of a countably compact
group topology on an Abelian group G of size at most ¢ [14].

In our next “twin” theorems we establish that these pairs of conditions are, con-
sistently, also sufficient for the existence of a hereditarily separable pseudocompact
and countably compact group topology on a group G of size at most 2°¢.

Theorem 2.6. In M[G], the following conditions are equivalent for any Abelian
group G:

(i) G admits a separable pseudocompact group topology,

(i) G admits a hereditarily separable pseudocompact group topology,

(ii) G admits a hereditarily separable pseudocompact group topology without in-
finite compact subsets, and

() |G| < 2° and G satisfies both PS and tCC.

We can also prove that the equivalence of items (i) and (iv) in the above theorem
holds in ZFC.

Theorem 2.7. In M;[G], the following conditions are equivalent for any Abelian
group G:

(i) G admits a separable countably compact group topology,

(i) G admits a hereditarily separable countably compact group topology,

(ii) G admits a hereditarily separable countably compact group topology without
infinite compact subsets, and

(iv) |G| < 2° and G satisfies both PS and CC.

Theorem 2.7 recovers (and greatly extends) the main result of Dikranjan and
Tkachenko [14]: It is consistent with ZFC that an Abelian group G of size at most
¢ has a countably compact group topology if and only if G satisfies both PS and
CC.

Things become “essentially trivial” in Todorcevié’s model of ZFC without S-
spaces:

Theorem 2.8. In any model of ZFC in which there are no S-spaces the following
conditions are equivalent for any Abelian group G:
(i) G admits a hereditarily separable pseudocompact group topology,
(i) G admits a hereditarily separable countably compact group topology, and
(#ii) G admits a compact metric group topology.

Let G be any Abelian group such that ¢ < |G| < 2° Since compact metric
spaces have size at most ¢, our previous theorem implies that, consistently, G does
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not admit a hereditarily separable pseudocompact group topology. On the other
hand, if one additionally assumes that G satisfies both PS and CC, then G admits
a hereditarily separable countably compact group topology in the model M, [G]
(Theorem 2.7). In particular, we conclude that the existence of a hereditarily sep-
arable pseudocompact (or countably compact) group topology on the free Abelian
group of size 2° is both consistent with and independent of ZFC. (An example of
an Abelian group of size ¢ with similar properties is much harder to obtain.)

We will now look at what our Theorems 2.6 and 2.7 say for four particular impor-
tant subclasses of Abelian groups: torsion groups, non-torsion groups, torsion-free
groups, and divisible groups.

Corollary 2.9. In M,[G], the following conditions are equivalent for any torsion
Abelian group G:

(i) G admits a separable pseudocompact group topology,

(ii) G admits a hereditarily separable countably compact group topology without
infinite compact subsets, and

(#ii) |G| < 2° and G is a bounded torsion group satisfying CC.

Proof. Let G be a torsion Abelian group. According to Lemma 2.4(i), a bounded
torsion group satisfies P'S, so (iii) implies (ii) by Theorem 2.7. The implication (ii)
— (i) is trivial. To see that (i) — (iii), note that |G| < 2¢ and G satisfies both
PS and tCC by Lemma 2.5(i). Since G is torsion, Lemma 2.4(i) yields that G is
a bounded torsion group, while Lemma 2.4(vi) implies that G satisfies CC. O

The following particular case of the above corollary seems to be worth mention-
ing:

Corollary 2.10. In M,[G], for every prime number p, each natural number n > 1
and every infinite cardinal T, the following conditions are equivalent:

(i) Z(p™)") admits a separable pseudocompact group topology,

(i) Z(p™)") admits a hereditarily separable countably compact group topology
without infinite compact subsets, and

(1) ¢ < 1 < 2°.

Proof. For the group Z(p”)(T), condition CC is equivalent to “7 is either finite or
7 > ¢”, and the result follows from Corollary 2.9. O

Since torsion pseudocompact groups are always zero-dimensional [9], the assump-
tion that G is non-torsion is necessary in the next two theorems.

Theorem 2.11. In M,[G], the following conditions are equivalent for any non-
torsion Abelian group G:

(i) G admits a separable pseudocompact group topology,

(i) G admits a hereditarily separable connected and locally connected pseudo-

compact group topology without infinite compact subsets, and
(i) |G| < 2° and G satisfies PS.

Theorem 2.12. In M,[G], the following conditions are equivalent for any non-
torsion Abelian group G:

(i) G admits a separable countably compact group topology,

(i) G admits a hereditarily separable connected and locally connected countably
compact group topology without infinite compact subsets, and

(i) |G| < 2° and G satisfies PS and CC.



22 D. DIKRANJAN AND D. SHAKHMATOV

In the case of torsion-free groups things become very transparent, as algebraic
restraints disappear again:

Corollary 2.13. In M,[G], the following conditions are equivalent for any torsion-
free Abelian group G:

(i) G admits a separable pseudocompact group topology,

(i) G admits a hereditarily separable countably compact connected and locally

connected group topology without infinite compact subsets, and

(iii) ¢ < |G| < 2°.
Proof. Let G be a torsion-free Abelian group. According to item (iii) of Lemma
2.4, condition PS for G is equivalent to |G| > ¢, while items (iv) and (v) of the

same lemma imply that both conditions CC and tCC hold for G. It remains only
to plug these facts into Theorems 2.11 and 2.12. (I

We note that even a very particular case of our Corollary 2.13 constitutes the
main result of Koszmider, Tomita and Watson [27]: It is consistent with ZFC
that for every cardinal 7 such that ¢ < 7 = 7% < 2¢ the free Abelian group of
size T admits a countably compact group topology without non-trivial convergent
sequences. The topology constructed in [27] is not hereditarily separable, while
our topology is. Furthermore, while our topology does not have infinite compact
subsets, it is not at all clear if the topology from [27] has infinite compact subsets
or not.

As usual, for a prime number p and an Abelian group G, r,(G) denotes the p-rank
of G. Our next theorem reduces the problem of the existence of a (hereditarily)
separable countably compact group topology on a divisible Abelian group G to a
simple checking of transparent conditions involving the cardinality, free rank and
p-ranks of G.

Theorem 2.14. In M,[G], the following conditions are equivalent for any non-
trivial divisible Abelian group G:

(i) G admits a separable countably compact group topology,

(i) G admits a hereditarily separable connected and locally connected countably
compact group topology without infinite compact subsets,

(111) ¢ < r(G) < |G| <2 and, for every prime number p, either the p-rank r,(G)
of G is finite or the inequality 7,(G) > ¢ holds.

Corollary 2.15. In M[G], the following conditions are equivalent for any Abelian
group G:

(i) G admits a separable connected precompact group topology,

(i) G admits a hereditarily separable connected and locally connected pseudo-
compact group topology without infinite compact subsets.

Proof. (i) —(ii). Since G is precompact, there exists a non-trivial continuous char-
acter x : G — T. Then x(G) is a non-trivial connected subgroup of T, which yields
X(G) = T. Therefore r(G) > r(T) = ¢. In particular, G is non-torsion and satisfies
PS. The separability of G yields |G| < 2°. Now implication (iii)—(ii) of Theo-
rem 2.11 guarantees that G admits a hereditarily separable connected and locally
connected pseudocompact group topology without infinite compact subsets.

(i) —(ii) is trivial. O

Fact 1.2(i) inspired a quest for constructing compact-like group topologies with-
out non-trivial convergent sequences, see, for example, [36, 21, 15, 28, 30, 38, 8, 44].
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Our next corollary shows that, in a certain sense, one does not need to work that
hard in order to get these topologies: Indeed, at least on Abelian groups of size at
most 2°, there are “plenty” of them around in the model M, [G]:

Corollary 2.16. In M,[G], let G be an Abelian group of size at most 2°. Then:

(i) G admits a hereditarily separable precompact group topology without infinite
compact subsets,

(ii) if G admits a pseudocompact group topology, then G also has a hereditarily
separable pseudocompact group topology without infinite compact subsets,

(iii) if G admits a countably compact group topology, then G also has a heredi-
tarily separable countably compact group topology without infinite compact subsets.

Proof. Ttem (i) follows from the implication (iv) — (iii) of Theorem 2.1. Ttem (ii)
follows from Lemma 2.5(i) and the implication (iv) — (iii) of Theorem 2.6. Item
(iil) follows from Lemma 2.5(ii) and the implication (iv) — (iii) of Theorem 2.7. O

As a by-product of our results, we can completely describe the algebraic struc-
ture of the Abelian groups of size at most 2¢ which admit, at least consistently, a
countably compact group topology.

Corollary 2.17. In M,[G], let G be an Abelian group of size at most 2°. Then G
admits a countably compact group topology if and only if G satisfies both PS and
CC.

Proof. The “only if” part follows from Lemma 2.5(ii), and the “if” part follows
from the implication (iv) — (iii) of Theorem 2.7. O

Corollary 2.18. In M;[G], a torsion Abelian group G of size at most 2° admits a
countably compact group topology if and only if G is bounded and satisfies CC.

Proof. The “only if” part follows from Lemma 2.5(ii), and the “if” part follows
from the implication (iii) — (ii) of Corollary 2.9. O

Corollary 2.19. In M, [G], a torsion-free Abelian group G of size at most 2° admits
a countably compact group topology if and only if |G| > c.

Proof. Corollary 2.13 applies. (]

Corollary 2.20. In M[G]|, the following two conditions are equivalent for every
Abelian group G of size at most 2° that is either torsion or torsion-free:

(i) G admits a pseudocompact group topology, and

(i) G admits a countably compact group topology.

Proof. Clearly (ii) implies (i). To prove the converse, assume (i). Then G satisfies
PS and tCC by Lemma 2.5(i). If G is torsion, G satisfies CC by item (vii) of
Lemma 2.4. If G is torsion-free, then G satisfies CC by item (iv) of Lemma 2.5.
Since |G| < 2¢ and G satisfies both PS and CC, Theorem 2.7 now yields that G
has a countably compact group topology. [

Corollary 2.21. In M;[G]|, a divisible Abelian group G of size at most 2° admits
a countably compact group topology if and only if r(G) > ¢ and, for every prime
number p, either the p-rank r,(G) of G is finite or the inequality r,(G) > ¢ holds.

Proof. This immediately follows from Theorem 2.14. ([
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The counterpart of Corollary 2.17 for pseudocompact group topologies can be
proved in ZFC.

Theorem 2.22. Let G be an Abelian group of size at most 2°. Then G admits a
pseudocompact group topology if and only if G satisfies both PS and tCC.

We will now exhibit an application of Theorem 2.7 to van Douwen’s problem, see
Subsection 1.3. Our next corollary demonstrates that, contrary to van Douwen’s
belief, it is consistent with ZFC that there is nothing exceptional about Abelian
groups whose size has countable cofinality, such as X, N, 1., Nytwtw ete., from
the point of view of the existence of countably compact group topologies.

Corollary 2.23. For every ordinal o > 1, it is consistent with ZFC and ¢ = w;
that every Abelian group of size N, satisfying conditions PS and CC admits a
(hereditarily separable) countably compact group topology (without infinite compact
subsets).

Proof. “Make” k bigger than N,. Then, in M[G], 2° = k will also be bigger than
N,. Now our corollary immediately follows from the conclusion of Theorem 2.7. [J

Again, things become especially transparent in both torsion and torsion-free
case.

Corollary 2.24. For every ordinal o > 1, it is consistent with ZFC plus ¢ = w1 that
every bounded torsion Abelian group of size X, satisfying CC admits a (hereditarily
separable) countably compact group topology (without infinite compact subsets).

Proof. This follows from Corollary 2.23 because bounded torsion groups satisfy PS
(see item (ii) of Lemma 2.4). O

Corollary 2.25. For every ordinal o > 1, it is consistent with ZFC plus ¢ = wy
that for every prime number p and each natural number n > 1 the group Z(p")(Nf’)
admits a (hereditarily separable) countably compact group topology (without infinite
compact subsets).

Proof. This follows from Corollary 2.24 since the group Z(p™)®<) satisfies condition
CC because ¢ = Ny < N, ([l

Even a particular case of our last corollary, with p = 2 and n = 1, implies the
main result of Tomita [44]: For every ordinal ¢ > 1, it is consistent with ZFC
plus ¢ = w; that the Boolean group Z(Q)(N“) of size N, can be equipped with a
countably compact group topology. It is also worth mentioning that the group
topology constructed in [44] is not hereditarily separable and has non-trivial con-
vergent sequences (because it contains a ¥-product of uncountably many compact
metric groups, and it is easily seen that such a >-product is not separable and has
an infinite compact metric subgroup).

Corollary 2.26. For every ordinal o > 1, it is consistent with ZFC that every
torsion-free Abelian group of size R, admits a (hereditarily separable) countably
compact group topology (without infinite compact subsets).

Proof. “Make” k bigger than R,. Then, in M,[G], 2° = & will also be bigger than
N,. Since ¢ = 8y < N,, Corollary 2.13 applies. O
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Our results on hereditary separable topologizations allow us to make a con-

tribution to the celebrated “S-space problem” . Scattered examples of topological
groups which are S-spaces are known in the literature [21, 15, 38, 28, 33, 34, 29, 37].
Our final three theorems describe completely which Abelian groups admit group
topologies (with various compactness conditions) which make them into S-spaces.

Theorem 2.27. In M,[G], the following are equivalent for an Abelian group G:

(i) G admits a group topology that makes it into an S-space,
(i) G admits a precompact group topology that makes it into an S-space,
(iii) ¢ < |G| < 2°.

Theorem 2.28. In M[G], the following are equivalent for an Abelian group G:

(i) G admits a pseudocompact group topology that makes it into an S-space,
(i1) ¢ < |G| < 2° and G satisfies both PS and tCC.

Theorem 2.29. In M[G], the following are equivalent for an Abelian group G:

(i) G admits a countably compact group topology that makes it into an S-space,
(#i) ¢ < |G| < 2° and G satisfies both PS and CC.

Since hereditarily separable (initially w-)compact groups are metrizable, a (ini-

tially wy-)compact group cannot be an S-space.
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ON THE PROPERTY “SEP” OF PARTIAL ORDERINGS

SAKAE FUCHINO

ABSTRACT. A partial ordering P has the property SEP (or SEP(P)), if, for
a sufficiently large regular cardinal x, the family of elementary submodels of
H(x) of cardinality ¥1 with the property that [M]X0 N M is cofinal subset (with
respect to C) of [M]¥0 and PN M <, P, is cofinal (also with respect to C)
in [H(x)]®1 (see Proposition 2 below). We describe, in section 1, against
which historical background this notion came to be formulated. In section 2,
we introduce the property SEP and some other related properties of partial or-
derings P such as the weak Freese-Nation property and (X1, Ro)-ideal property
and review some known results around these properties. In section 3 we give
a sketch of a proof of the theorem asserting that the combinatorial principle
PRINC introduced by S. Shelah does not imply SEP of (P(w), C).

The following is based on author’s talk at General Topology Symposium 2002
held on 18-20, November 2002 at Kobe University, Japan. The property SEP to
be introduced in section 2 will be the main subject of this article. But since this is
going to appear in the proceedings of the general topology symposium, let us begin
with a historical account explaining the connection to topology.

1. HISTORICAL BACKGROUND

Remember that a zero-dimensional Hausdorff space is also called a Boolean space
— a topological space X is said to be zero-dimensional if closed and open (clopen)
subsets of X constitute a topological base of X.

It is well-known that there are contravariant functors between the category of
Boolean algebras and the category of Boolean spaces (Stone Duality Theorem). By
the duality, a Boolean algebra B is related to the space Ult(B) of all ultra-filters
on B with a canonical topology and a Boolean space X is related to the Boolean
algebra Clop(B) of clopen subsets of X partially ordered by C (see e.g. [16]).

One of the most important classes of Boolean spaces is that of the generalized
Cantor spaces “2 which are the product spaces of x copies of the discrete space
2 = {0,1} with their Boolean algebraic dual being free Boolean algebras Fr(k)
with a free generator of size k. A variety of classes of topological spaces which
are more or less similar to the generalized Cantor spaces, such as dyadic spaces,
Dugundji spaces and k-metrizable spaces, have been studied extensively in the
literature (see e.g. the reference of [17] and [12]).

These classes of topological spaces have natural counterparts in the category of
Boolean algebras via Stone Duality Theorem (see [17], [12]):

29



30 SAKAE FUCHINO

Boolean space which is: | corresponding notion in Boolean algebra

w2 Fr(k)
dyadic space subalgebra of a free Boolean algebra
Dugundji space projective Boolean algebra

Boolean algebra with Freese-Nation property
k-metrizable space (also called openly generated Boolean algebra)

The last line of the chart above is a result by Lutz Heindorf in [12] which can be
formulated as follows:

Theorem 1.1. (L. Heindorf [12]) A Boolean algebra B is a Boolean algebraic dual
of a k-metrizable space if and only if there is a mapping f : B — [B]<X° such that

(¥) Foranya,be B, a<b, there is c € f(a) N f(b) such that a < c <b.

A Boolean algebra with an f as above is said to have the Freese-Nation prop-
erty after R. Freese and B. Nation who studied this property in connection with
projective lattices in [2]. Soon after this result, an interesting weakening of the
Freese-Nation property was formulated in [12] and [9]: a Boolean algebra B is said
to have the weak Freese-Nation property (wFN) if there is a mapping f : B — [B]®°
with the property () as above. For a topological translation of the wFN see [12].

The following is an almost trivial but very useful characterization of Boolean
algebras with the wFN:

Theorem 1.2. (S. Fuchino, S. Koppelberg and S. Shelah [9]) A Boolean algebra
B has the wEN if and only if, for any sufficiently large reqular k and for any
M < (H(x),€) with B€ M and | M | = Xy, we have BN M <, B.

Here H(x) denotes the set consisting of all sets of hereditary of cardinality < x.
For a partial ordering (P, <) and its subordering @, @ is said to be a o-subordering
of P (or Q@ <, P)if and only if forany p € P, Q [ p={qg € Q : ¢ < p} has a
cofinal subset of size < Vg and Q T p={q € Q : ¢ > p} has a coinitial subset of
size < Ny. Note that, in case of a Boolean algebra B and its subalgebra A, it is
enough to check that every ideal in A of the form A [ b= {a € A : a < b} for some
b € B is countably generated to see that A is a o-subalgebra of B.

Let us say that a partial ordering P has the wFN (notation: WFN(P)) if P
satisfies the property given in Theorem 1.2, i.e. if for any sufficiently large regular
k and for any M < (H(x), €) with P € M and | M | = Xy, we have PN M <, P.

An interesting point about the wFN is that also the Boolean algebra (P(w), C)
can have this property’. Under CH this is trivially so but also in a model of ZFC
obtained by adding Cohen reals e.g. to a model of V = L (see [9] and [10]).

In [8], it is shown that under the assumption of the wFN of (P(w), C), we can
prove many of the combinatorial statements known to hold in Cohen models.

2. SEP AND SOME OTHER WEAKENINGS OF THE WEAK FREESE-NATION
PROPERTY

A. Dow and K.P. Hart defined the following weakening of the property WEN(P)
of a partial ordering P in [1]: A partial ordering P has the (R, Rg)-Ideal Property
(abbreviation: IDP(P)) if the following holds:

In contrast, (P(w), C) never has the Freese-Nation property.
*This assumption is also denoted as “WFN”.
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IDP(P): For any sufficiently large reqular k and for any M < (H(x), €) with
P e M and | M| = Ry such that [M]® N M is cofinal in [M]®°, we
have PN M <, P.

The question if WFN(P) is equivalent with IDP(P) is a very delicate one:

Theorem 2.1. (S. Fuchino and L. Soukup [10]) For partial ordering P of cardinal-
ity < N,,, WEN(P) if and only if IDP(P). If a very weak form of square principle
holds for cardinals of countable cofinality then WEN(P) and IDP(P) are equivalent
for arbitrary partial ordering P.

On the other hand, as is proved in [10], there is a partial ordering P with
=WFN(P) and IDP(P) under (R,)¥ = X, ; and Chang’s conjecture (N1, R,,) —
(N1, Rp).

It is shown in [1](independently from [8]) that most of the results obtained in
[8] under the wFN of P(w) can be already proved under the weaker assumption of
IDP of P(w).

n [13], I. Juhdsz and K. Kunen introduced a property which they called SEP.
For a Boolean algebra B let SEP(B) be the following assertion:

SEP(B): For every sufficiently large reqular cardinal x, the set of those M <
H(x) satisfying the following conditions (0)~(2) is cofinal in [H(x)]™ :

(0) Be M and | M| =Ny;

(1) [M]®o N M is cofinal in [M]¥0;

(2) BNM <4 B.
Here, for a Boolean algebra A and its subalgebra B, B <., A if and only if for all
a€ Aand K € [B | a]®, there is b € B | a such that | K N B | b| = ¥; where
B | a denotes as before the ideal {d € B : d < a}.

SEP has a characterization which put it in line with wFN and IDP. This follows
from the next lemma. ( S. Fuchino and S. Geschke [6]) Suppose that A is a Boolean
algebra and B its subalgebra. Then

(1) B <, Aimplies B <g¢ A.

(2) If | B| <Ny then B <, A implies B <, A

Proof. (1): Suppose that B <, A. For a € A and K € [B | a|™. Let {b,

n € w} be a cofinal subset of B [ a. Then K = KnNB|b,). Hence one of
KN B |b,, n €w must be uncountable.

(2): Let B = {by : @ <wi}. Assume that B <., A but B is not a o-subalgebra
of A. Then there is an a € A such that B | a is not countably generated. Let
Co € A | b be taken inductively so that ¢, is not in the ideal in B generated by

new(

Go={cg: B<a}tU{bs : f<a,bsg<a}l.

This is possible since each G, C B [ a is countable. Let K = {c, : @ < w;}. By
assumption there is some By < w; such that bg, < a and KNB | bg, is uncountable.
Then there is some $y < o < w; such that ¢, € K N B [ bg,. But, since bg, < a,

bg, € Go and so ¢, £ bg,. This is a contradiction. [ (Lemma 0)
(S. Fuchino and S. Geschke [6]) For a Boolean algebra B, SEP(B) if and only if
the following holds:
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For every sufficiently large regular cardinal x, the set of those M < H(x)
satisfying the following conditions (0)~(2) is cofinal in [H(x)]™* :

(0) Be M and | M| =Ny;

(1) [M]® N M is cofinal in [M]N0;

(2) BAM <, B.

Proof. By Lemma 2. [d (Proposition 0)

Note that the characterization of SEP is applicable for partial orderings as well.
Hence we shall say SEP(P) for a partial ordering P if, for every sufficiently large
regular cardinal x, the set of those M < H(x) satisfying the following conditions
(0)~(2’) is cofinal in [H(x)]**: (0) P € M and | M | = Ry; (1) [M]® N M is cofinal
in [M]®; (2)) PN M <, P.

Clearly we have

WFN(P) = IDP(P) = SEP(P)

for all partial ordering P. In [6] it is proved (in ZFC without any additional as-
sumptions) that there exists a Boolean algebra B such that —~IDP(B) and SEP(B).

3. PRINC DOES NOT IMPLY SEP

Let us denote by WEN, IDP and SEP the combinatorial statements WFN(P (w)),
IDP(P(w)) and SEP(P(w)) respectively where P(w) is seen here as before as the
partial ordering (P(w), C). It is shown in [7] that WFN <4 IDP is consistent with
ZFC modulo some quite large cardinal. The consistency of IDP <4 SEP (without
any large cardinal) is proved in [6]. Thus we have:

WEFEN 2 IDP 2 SEP

SEP is still strong enough to drive most of the results proved in [8] under the
assumption of WEN. Most of the proofs in [8] can be easily modified to a proof
under SEP. With one exception: The proof of a = N; under WFN in [8] works
without any problem under IDP but it seems that the proof cannot be recast for
the proof under SEP. What we have right now is the following slightly weaker result:

Theorem 3.1. (S. Fuchino and S. Geschke [6]) Assume O,,. Then SEP implies
a=N;.

There are some other combinatorial principles which are also related to these
principles. One of them is introduced by S. Shelah and called PRINC:

PrINC:  For every sufficiently large reqular cardinal x, the set of those M <
H(x) satisfying the following conditions (I)~(II1) is cofinal in [H(x)]™ :
(@) [M]=2Ry;
(II) wo N M € wo;
(I1) For all a € P(w) there is X € [P(w)]" N M such that X N'P(a)
is cofinal in P(a) N M.
SEP implies PRINC. Proof. Assume SEP and suppose that y is sufficiently large
and M < H(x) is such that | M | = Ry, [M]®° N M is cofinal in [M]*° and P(w) N
M <, P(w).
Note that, by assumption, there are cofinally may such M’s in [H(x)]**. Hence
it is enough to show that M as above satisfies (I), (I) and (III) in the definition of
PRINC.
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M = (I) is clear. For (II), note that w; C M. Suppose a € we N M. Then, by
elementarity, there is f € M such that f : w; — « and f is surjective. It follows
that o = f”w; € M. Hence wy N M is an initial segment of ws of cardinality R
and thus an element of ws.

To show M | (IIT), let a € P(w). Then there is a countable X’ C P(a) N M
such that X' is cofinal in P(a)N M. Let X" € [P(w)]"° N M be such that X’ C X"
By elementarity, there is some X € [P(w)]*" N M with X” C X. This X is clearly

as in (III) for our a. [ (Lemma 0)

To close this section, we shall give a sketch of the proof the the converse of Lemma
Odoes not hold. The following Theorem is due to Stefan Geschke:

Theorem 3.2. Suppose that V |= CH, @Q is a partial ordering satisfying the c.c.c.
and there is a partial ordering P of cardinality < Ry such that Q is a finite support
product of copies of P. Then |Fg “PRINC”.

Theorem 3.3. —=SEP + PRINC s consistent with ZFC.

Proof. Start from a model V' of CH. In V| let P be the partial ordering for adding
a single random real and let @ be a finite support product of x > Ny copies of P.
Then |F¢g “—SEP” by Lemma 3.1.6 in [11] and Theorem 8.1 in [6]. On the other

hand |F¢g “PRINC” by Theorem 3.2. [d (Theorem 0)

4. SOME MORE PRINCIPLES

The following diagram summarizes known implications among combinatorial
principles discussed in the previous sections together with some other combina-
torial principles from [14], [15] and [5]:

WFEN

Y
IDP

CcH*
13-45= o ¥ U

SEP
1P (wz)

SN RGO !

PRrINC HP (ws)
s § o)
C*(w2)

45« 454 3

() By Lemma 3.
(*) By Theorem 3.3.
(**) By S. Shelah in an unpublished note.
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SELECTIONS AND SANDWICH-LIKE PROPERTIES VIA
SEMI-CONTINUOUS BANACH-VALUED FUNCTIONS

VALENTIN GUTEV, HARUTO OHTA, AND KAORI YAMAZAKI

1. INTRODUCTION

Since the paper will be published in the J. Math. Soc. Math. soon, we omit all
of the proofs and some lemmas. Throughout this paper, by a space we mean a non-
empty Ti-space. Our investigation was motivated by the following two theorems;
the former was proved by Katétov [14, 15] and Tong [29], and the latter was proved
by Kandé [13] and Nedev [23]:

Theorem 1.1 (Katétov-Tong’s insertion theorem). A space X is normal if and
only if for every two functions g,h : X — R such that g is upper semi-continuous,
h is lower semi-continuous and g < h, there exists a continuous function f : X — R
such that g < f < h.

For a Banach space Y, let F.(Y) (resp., C.(Y)) denote the set of all non-empty
closed (resp., non-empty compact) convex sets in Y. A map f: X — Y is called a
selection of a mapping ¢ : X — F.(Y) if f(x) € ¢(x) for every z € X.

Theorem 1.2 (Kandd-Nedev’s selection theorem). Let A be an infinite cardinal.
Then, the following conditions on a space X are equivalent:
(1) Ewery point-finite open cover U of X, with |U| < A, is normal.
(2) For every Banach space Y, with w(Y) < A, every lower semi-continuous
mapping ¢ : X — C.(Y) admits a continuous selection.
(3) Ewery lower semi-continuous mapping ¢ : X — C.(¢1(N)) admits a contin-
uous selection.

Theorem 1.2 can be regarded as an essential part of Michael’s selection theorem
[19, Theorem 3.2'] (see, also, [2]) asserting that a space X is A-collectionwise normal
if and only if X satisfies the condition (2) with C.(Y") replaced by C.(Y) U {Y'}.

For a space Y, let Cp(Y) denote the Banach space of all real-valued continuous
functions s on Y such that for each ¢ > 0 the set {y € Y : |s(y)| > ¢} is compact,
where the linear operations are defined pointwise and ||s|| = sup,cy [s(y)| for each
s € Co(Y). In particular, we use co(A) to denote the space Cy(Y'), where Y is the
discrete space of cardinality A, i.e. ¢o(A) is the Banach space consisting of all points
s € R* such that the set {a < X : |s(a)| > ¢} is finite for each € > 0.

In this paper, we introduce lower and upper semi-continuity of a map to Cy(Y).
We prove that if the space R in Theorem 1.1 is replaced by ¢o(X), then the resulting
statement is equivalent to the conditions listed in Theorem 1.2, see Theorem 3.1.
Thus, insertions and selections are connected via the space co(A). As a result, we

35
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obtain several sandwich-like analogues to selection theorems as well as selection
theorems corresponding to sandwich-like properties, see Section 4.

For set-valued mappings ¢ and v defined on a space X, we say that ¢ is a set-
valued selection of 1, or v is an expansion of ¢, if p(z) C ¥(x) for each x € X.
Let C(Y') denote the set of all non-empty compact sets in a space Y. In [23] Nedev
has characterized several paracompact-like properties by the existence of set-valued
selections of C(Y)-valued mappings for completely metrizable spaces Y. In contrast
to this, we characterize expandability and almost expandability in the sense of
[16, 27] by insertion of c¢o(\)-valued maps, and by the existence of expansions of
C(Y')-valued mappings for completely metrizable spaces Y, see Section 5.

We often consider two kinds of maps in the same statement, i.e., a single-valued
map to a space Y and a set-valued map to a hyperspace of Y. To distinguish them,
we use the term map for the former one and the term mapping for the latter one.
As usual, a cardinal is identified with the initial ordinal and an ordinal is the set
of all smaller ordinals. The cardinality of a set A is denoted by |A|. Let w denote
the first infinite cardinal and N the set of non-negative integers. Other terms and
notation will be used as in [8].

2. SEMI-CONTINUOUS Cy(Y)-VALUED FUNCTIONS AND COMPACT SETS

In this section, X and Y denote arbitrary spaces and \ stands for a cardinal. For
a real-valued function f: X — R and r € R, let L(f,r) ={zx € X : f(x) > r} and
U(f,r) ={z € X : f(x) < r}. Recall that a function f : X — R is lower (resp.,
upper) semi-continuous if L(f,r) (resp., U(f,r)) is open in X for each r» € R. Now,
we extend these notions to Cy(Y')-valued maps as follows:

Definition 2.1. A map f: X — Cy(Y) is lower (resp., upper) semi-continuous if
for every x € X and every € > 0, there is a neighbourhood G of x in X such that if
7' € G, then f(«')(y) > F(@)(y) — & (resp., f(z')(y) < F(zx)(y) + <) for cach y € Y.

With every map f : X — Cy(Y) we associate another one —f : X — Cy(Y)
defined by (—f)(z)(y) = —f(x)(y) for each x € X and each y € Y. The first
lemma is a direct consequence of the definition.

Lemma 2.2. A map f: X — Co(Y) is continuous if and only if it is both lower
and upper semi-continuous. A map f: X — Co(Y) is lower semi-continuous if and
only if the map —f is upper semi-continuous.

The following three lemmas concern only the case of co(A). For each @ < A, let
7o : R* — R denote the a-th projection, i.e. m,(s) = s(a) for s € R,

Lemma 2.3. For a map f: X — co(\), the following are valid:

(1) f is lower semi-continuous if and only if w7y o f is lower semi-continuous
for each o < A, and {U(mq o f,—¢€) : a < A} is locally finite in X for each
e>0.

(2) f is upper semi-continuous if and only if mo o f is upper semi-continuous
for each a < A, and {L(my 0 f,e) : @ < A} is locally finite in X for each
e>0.

Lemma 2.4. Let f : X — R* be a map. Then, f[X] C co(A) if and only if both
{L(mo 0 fye) : a < A} and {U(mwy 0 f,—€) : @ < A} are point-finite in X for each
e > 0.
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For s € Co(Y) and € > 0, let B(s,e) = {t € Co(Y) : ||s —t|| < }. For
s,t € Co(Y), we write s < ¢t if s(y) < t(y) for each y € Y. Further, if s < ¢, then
we define [s,t] = {u € RY : s < u < t}. Obviously, [s,?] is a closed convex subset
of Cy(Y). In the case of ¢o(A), we have a stronger result:

Lemma 2.5. For every s,t € co(X), with s < t, the subspace topology o on [s,t]
coincides with the subspace topology induced from the product topology T on R,
Hence, in particular, [s,t] is a compact convex subset of co(N).

We now recall the definitions of upper and lower semi-continuity of set-valued
mappings. Let ¢ : X — S be a set-valued mapping, where S is a family of non-
empty subsets of a space Y. For asubset U C Y, let ¢~ {U] = {z € X : ¢p(x)NU #
0} and ¢#[U] = {x € X : ¢(x) C U}. The mapping ¢ : X — S is called lower
(resp., upper) semi-continuous if ¢~1[U] (resp., ¢7[U]) is open in X for every
open set U in Y. Also, ¢ is called continuous if it is both lower and upper semi-
continuous.

For maps g,h : X — Co(Y), we shall write g < h if g(z) < h(x) for every
x € X. With every two such maps we associate a set-valued mapping [g,h] : X —
Fe(Co(Y)) defined by [g, h](x) = [g(z), h(z)] for x € X. Also, we associate two
mappings [g, +00) and (—oo, h] from X to F.(Cy(Y)) by [g, +o0)(z) = {s € Cx(Y) :
s > g(z)} and (—oo,h](z) = {s € Co(Y) : s < h(x)} for x € X, respectively.
Finally, for S C Cy(Y) and € > 0, let B(S,¢) denote the e-neighbourhood of S in
Co(Y), ie. B(S,e) = U,cq B(s,¢).

Lemma 2.6. Let g,h: X — Co(Y) be maps such that g < h.

(1) If g is upper semi-continuous, then [g,+00) is lower semi-continuous.

(2) If h is lower semi-continuous, then (—oo, h] is lower semi-continuous.

(3) If g is upper semi-continuous and h is lower semi-continuous, then the
mapping g, h] is lower semi-continuous.

(4) If g is lower semi-continuous, h is upper semi-continuous and Y is discrete,
then the mapping [g, h] is upper semi-continuous.

For a non-empty bounded set K C Cy(Y), we define points sup K and inf K
of RY by (sup K)(y) = sup{s(y) : s € K} and (inf K)(y) = inf{s(y) : s € K},
respectively, for each y € Y.

Lemma 2.7. If K is a non-empty compact set in Co(Y'), then sup K € Co(Y) and
inf K € Cy(Y). Hence, K C [inf K, sup K.

For a mapping ¢ : X — C(Cy(Y)), we define single-valued maps sup¢ : X —
Co(Y) and inf ¢ : X — Co(Y) by (sup¢)(x) = sup ¢(z) and (inf ¢)(z) = inf ¢(x),
respectively, for each z € X.

Lemma 2.8. Let ¢ : X — C(Co(Y)) be a mapping.
(1) If ¢ is lower semi-continuous, then sup ¢ is lower semi-continuous and inf ¢
1S upper semi-continuous.
(2) If ¢ is upper semi-continuous, then sup ¢ is upper semi-continuous and
inf ¢ is lower semi-continuous.

3. EXTENSION OF THEOREM 1.2

For two families F and G of subsets of a space X, we call G an expansion of F
if there exists a bijection G : F — G such that FF C G(F') for each F € F. An
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open ezrpansion is an expansion consisting of open sets. For real-valued functions
fa, a < A, on a space X, let Aycyfo denote the map f : X — R such that
g 0 f = fo for each a < A.

In this section, we find a natural relationship between insertions and selections
by proving the following theorem which extends Theorem 1.2. The equivalence of
(1) and (2) is due to Kand6 [13] and Nedev [23] as was stated in the introduction.

Theorem 3.1. For an infinite cardinal A, the following conditions on a space X
are equivalent:

(1) Every point-finite open cover U of X, with U] < A, is normal.

(2) For every Banach space Y, with w(Y) < X, every lower semi-continuous
mapping ¢ : X — C.(Y) admits a continuous selection.

(3) Ewery lower semi-continuous mapping ¢ : X — C.(co(N\)) admits a contin-
uwous selection.

(4) For every two maps g,h : X — co(\) such that g is upper semi-continuous,
h is lower semi-continuous and g < h, there exists a continuous map f :
X — co(N) such that g < f < h.

(5) For every two maps g,h : X — ¢co(N\) such that g is upper semi-continuous,
h is lower semi-continuous and g < h, there exist a lower semi-continuous
map fo: X — co(N) and an upper semi-continuous map f, : X — co(N)
such that g < fo < fu < h.

(6) X is normal, and every locally finite family F of closed sets in X, with
|F| < A, has a locally finite open expansion provided it has a point-finite
open expansion.

(7) Every discrete family F of closed sets in X, with |F| < X\, has a disjoint
open expansion provided it has a point-finite open expansion.

Remark 3.2. The following conditions (8) and (9) are also equivalent to the condi-
tions listed in Theorem 3.1. For two mappings ¢, : X — C(Y'), we write ¢ C 9 if
o(x) C () for each x € X.

(8) For every metrizable space Y, with w(Y) < A, and every lower semi-
continuous mapping ¢ : X — C(Y), there exist a lower semi-continuous
mapping ¢ : X — C(Y) and an upper semi-continuous mapping ¢ : X —
C(Y) such that ¢ C 9 C ¢.

(9) There exist a space Y and a disjoint family G of non-empty open sets in Y,
with |G| = A, such that for every lower semi-continuous mapping ¢ : X —
C(Y), there exists an upper semi-continuous mapping 9 : X — C(Y') such
that v C ¢.

The equivalence of (1) and (8) was proved by Nedev in [23, Theorem 3], while
(8) = (9) is obvious. To show that (9) = (7), let F be a discrete family of closed
sets in X, with |F| < A\, and U = {U(F) : F € F} be a point-finite open expansion
of F. We may assume that U covers X and U(F) N F’ = () whenever F' # F’. On
the other hand, there exists a disjoint family G = {G(F) : F' € F} of non-empty
open sets in Y. Fix a point yp € G(F) for each F' € F and define ¢ : X — C(Y)
by ¢(x) = {yr : x € U(F), F € F} for x € X. Then, ¢ is lower semi-continuous
because U is an open cover of X. Hence, by (9), there exists an upper semi-
continuous mapping ¥ : X — C(Y) such that ¢ C ¢. Let V(F) = ¢#[G(F)] for
each F € F. Then {V(F): F € F} is a disjoint open expansion of F.



SELECTIONS AND SANDWICH-LIKE PROPERTIES 39

Let »-PN be the class of all spaces satisfying one of (and hence, all of) the
conditions listed in Theorem 3.1. Define the class PN by X € PN if and only
if X € APN for every cardinal A. Then, PN is included in the class A of all
normal spaces and contains the class CA of all collectionwise normal spaces, i.e.
CN C PN C N. Michael [18] has shown that both inclusions are proper by giving
the examples which we now sketch below:

The example showing that PN # CN is the standard Bing’s example (cf. [8,
Example 5.1.23]). The product space X = D?* of the discrete space D = {0,1}
contains a discrete subspace M, with |M| = ¢. Bing’s space Z is obtained from the
space X by making all points of X\ M isolated. It is known that Z € N'\CN. Notice
that every point-finite family of non-empty open sets in X is at most countable;
this follows from the fact that the Sanin number of X is countable (cf. [8, 2.7.11, p.
116]). Hence, it follows that Z € PN . Next, consider the subspace Y = M U D of
Z, where D = {z € X : {a < 2°: z(«) # 0} is finite}. Michael [18] has shown that
the space Y is normal metacompact but not paracompact. Hence, Y € N\ PN
because every metacompact space in PA must be paracompact.

Since the space Y = M U D is closed in Bing’s space Z, the example above also
shows that the class PN is not closed under taking closed subspaces unlike N and
CN'. From this fact, it is natural to ask whether a space X is in CN if every closed
subspace of X is in PA. Now, we show that the answer is negative if there exists
a (Q-set. To this end, let us recall that a subset A of the real line R is called a
@-set if A is uncountable and every subset of A is a Gs-set in A with respect to the
subspace topology on A inherited from the usual topology on R. It is known that
every uncountable subset A C R, with |A| < ¢, is a @-set under assuming Martin’s
axiom and the negation of the continuum hypothesis (see [20] for details).

Example 3.3. If there exists a @-set in R, then there exists a perfectly normal
space X such that every subspace is in PA but X € CN.

Problem 3.4. Does there exist an example in ZFC of a space X ¢ CN such that
every closed subspace of X is in PN?

4. SANDWICH-LIKE CHARACTERIZATIONS OF PARACOMPACT-LIKE PROPERTIES

A space X is called A-collectionwise normal if every discrete family F of closed
sets in X, with |[F| < A, has a discrete open expansion. In what follows, for a
Banach space Y, we put CL(Y) = C.(Y)U{Y}.

Our first result is an insertion-like theorem which characterizes A-collectionwise
normality.

Theorem 4.1. Let A be an infinite cardinal. For a space X the following conditions
are equivalent:

(1) X is A-collectionwise normal.

(2) For every Banach space Y, with w(Y) < X, every lower semi-continuous
mapping ¢ : X — CL(Y) has a continuous selection.

(3) Every lower semi-continuous mapping ¢ : X — CL(co(X)) has a continuous
selection.

(4) For every closed subspace A of X and for every two maps g,h : A — co(N)
such that g is upper semi-continuous, h is lower semi-continuous and g < h,
there exists a continuous map f : X — co(N\) such that g < fla < h.
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Our next result is a characterization of countably paracompact and A-collectionwise
normal spaces. To state our characterization of countably paracompact and \-
collectionwise normal spaces, we need also some terminology about Banach spaces.

Let Y be a space and let e : ¥ — R* be a map. Then we define e, = 7, 0 e,
where 1, : R® — R is the projection to the a-th factor of R*, for each a < A.
Thus, we have e = A{ey @ a0 < A}

Suppose that Y is a Banach space. Let us recall that a sequence {e, € Y :
n < w} is a Schauder basis for Y if any point y € Y has an unique representation
Y = D < Yn€n for some scalars (i.e., coordinates) y, € R, n < w. Here, y =

Y n<w Yn€n means that lim,,

’y — D k<n ykekH = 0, where ||.|| is the norm of Y.

Note that any Schauder basis {e, € Y : n < w} for a Banach space Y defines
a natural linear continuous injection e : ¥ — R%, see [3, Exercise I11.14.10] and
[26, Theorem 3.1]. Namely, one may define e : Y — R¥ by e,(y) = yn, n < w,
where y =3 yne, € Y. It should be mentioned that, with respect to this map
e = A{e, : e <w}, we have e,(e,) = 1 and ey, (e,) = 0 for m # n. Motivated by
this, we shall say that amap e : Y — R*is a generalized Schauder basis for a Banach
space Y if it is a continuous linear injection such that, whenever y € Y and a < A,
there is a point y, € Y, with eg(yn) = eg(y) if 8 = a and eg(yn) = 0 otherwise.
Clearly, the natural linear injection e : ¥ — R determined by a Schauder basis
for Y is a generalized Schauder basis but the converse does not hold. For instance,
consider the Banach space £°° of bounded sequences. Then the natural injection
e : £ — R* is a generalized Schauder basis but the space £*° does not have a
Schauder one since it is not separable.

The generalized Schauder basises will be used in the following special situation.

Definition 4.2. We shall say that a generalized Schauder basis e : Y — R* for a
Banach space Y is a ¢o(A)-basis for YV if e[Y] C ¢o(N) and it is continuous as a map
from Y to ¢o(A). Also, we shall say that Y is a generalized co(\)-space if it is a
Banach space, with w(Y') < A, which has a ¢g(\)-basis.

Note that co(A) is a generalized cqg(\)-space. Also, every Euclidean space is a
generalized cq(\)-space for every infinite cardinal A. Finally, the Banach spaces
£,(N), for p > 1, are another important example of generalized cy(X)-spaces.In

what follows, for a convex set K of a Banach space Y, we consider an weak convex
interior wci(K) of K defined by

wel(K) ={z € K: 2z =08x1 + (1 — 0)xy for some 1,22 € K\ {z} and 0 < § < 1}.

Also, for s,t € R*, we shall write s < t if s < t and s(a) < t(a) for some o < .
Finally, for maps g,h : X — R*, we write g < h if g(z) < h(x) for every z € X.

Theorem 4.3. Let A be an infinite cardinal. For a space X the following conditions
are equivalent:

(1) X is countably paracompact and \-collectionwise normal.

(2) Whenever Y is a generalized co(N)-space and ¢ : X — CL(Y) is a lower
semi-continuous mapping such that |¢(x)| > 1 for every x € X, there exists
a continuous map f: X — Y such that f(x) € wci(¢(z)) for all x € X.
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(3) For every lower semi-continuous mapping ¢ : X — Cl(co(X)), with |¢(z)| >
1 for every x € X, there exists a continuous map [ : X — co(\) such that
f(z) € wei(p(x)) for allx € X.

(4) For every closed subspace A of X and for every two maps g, h : A — co(N)
such that g is upper semi-continuous, h is lower semi-continuous and g < h,
there exists a continuous map f : X — co(N\) such that g < fla < h.

From one hand, Theorem 4.3 might be read as a possible extension of the Dowker-
Katétov characterization of countably paracompact normal spaces [5, 14], see also
[4]. From another hand, Theorem 4.3 should be compared with Michael’s char-
acterization [19, Theorem 3.1""] of perfectly normal spaces by selections avoiding
supporting points of convex sets. More precisely, in the Michael’s terminology [19],
if Y is a Banach space and K € F.(Y), then a supporting set of K is a closed
convex subset S of K, S # K, such that if an interior point of a segment in K is
in S, then the whole segment is in S. The set of all elements of K which are not
in any supporting set of K is denoted by I(K) (suggesting “Inside of K”). Finally,
as in [19], one may consider

D(Y) = {B € 2" : B is convex and I(cly B) C B}.

It is well known (see [19]) that F.(Y) C D(Y); that every convex B € 2¥ with
a non-empty interior belongs to D(Y); and that every finite-dimensional convex
B € 2Y belongs to D(Y).

As for our weak convex interior, it is clear that I(K) C wci(K) for every K €
F.(Y) but the converse is not true. In fact, the Michael’s [19, Theorem 3.1"] states
that a space X is perfectly normal if and only if for every separable Banach space
Y, every lower semi-continuous ¢ : X — D(Y) has a continuous selection.

Our next result present another possible characterization of perfectly normal
spaces in terms of selections.

Theorem 4.4. Let A be an infinite cardinal. For a space X the following conditions
are equivalent:

(1) X is perfectly normal and A-collectionwise normal.

(2) WheneverY is a generalized co(\)-space, every lower semi-continuous map-
ping ¢ : X — CL(Y) has a continuous selection f such that f(x) € wei(g(z))
for every x € X with |¢(z)| > 1.

(3) Ewery lower semi-continuous mapping ¢ : X — C.L(co(N)) has a continuous
selection f such that f(z) € wci(p(x)) for every x € X with |¢p(x)| > 1.

(4) For every closed subspace A of X and for every two maps g,h : A — co(N)
such that g is upper semi-continuous, h is lower semi-continuous and g < h,
there exists a continuous map f : X — co(A\) such that g < fla < h and
g(z) < f(x) < h(x) whenever x € A with g(x) < h(z).

Returning back to Theorem 4.3, a word should be said about condition (2) of
this theorem. In fact, the reader may wonder if this condition holds for all Banach
spaces. The authors do not know if this is true, which suggests the following natural
question.

Problem 4.5. Let X be a countably paracompact and A-collectionwise normal
space for some infinite cardinal A, Y be a Banach space with w(Y) < A, and
¢ : X — CL(Y) be lower semi-continuous such that |¢p(z)| > 1 for every z € X.
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Does there exist a continuous map f : X — Y such that f(z) € wci(¢(z)) for every
x € X?

5. CHARACTERIZATIONS OF EXPANDABLE SPACES

Let A be an infinite cardinal. A space X is called A\-expandable (resp., almost
A-expandable) if every locally finite family F of closed sets in X, with |F| < A,
has a locally finite (resp., point-finite) open expansion (cf. [16, 27]). We state the
results, then proceed to the proofs.

Theorem 5.1. For an infinite cardinal X, the following conditions on a space X
are equivalent:

(1) X is A-expandable.

(2) For every completely metrizable space Y, with w(Y) < A, and every up-
per semi-continuous mapping ¢ : X — C(Y), there exist two mappings
o, : X — C(Y) such that ¢ is lower semi-continuous, 1 is upper semi-
continuous and ¢ C ¢ C 1.

(3) There exists a space Y and a locally finite family G of non-empty open sets
in' Y, with |G| = A, such that for every upper semi-continuous mapping
¢ : X — C(Y), there exist two mappings o, : X — C(Y) such that ¢ is
lower semi-continuous, ¥ is upper semi-continuous and ¢ C ¢ C .

(4) For every upper semi-continuous map [ : X — co(\), there exist two maps
g, h + X — ¢co(N) such that g is lower semi-continuous, h is upper semi-
continuous and f < g < h.

Theorem 5.2. For an infinite cardinal X\, the following conditions on a space X
are equivalent:

(1) X is almost A-expandable.

(2) For every completely metrizable space Y, with w(Y) < X, and every up-
per semi-continuous mapping ¢ : X — C(Y), there exists a lower semi-
continuous mapping ¢ : X — C(Y') such that ¢ C .

(3) There exists a space Y and a locally finite family G of non-empty open
sets in'Y', with |G| = A, such that for every upper semi-continuous mapping
¢: X — C(Y), there exists a lower semi-continuous mapping ¢ : X — C(Y)
such that ¢ C .

(4) For every upper semi-continuous map f : X — co(N), there exists a lower
semi-continuous map g : X — co(A\) such that f < g.

Miyazaki [21] has proven the equivalence (1) and (2) in Theorem 5.1 assuming
that X is normal, and has shown that every metacompact space satisfies (2) in
Theorem 5.2.

It is known ([16]) that a space X is w-expandable if and only if it is countably
paracompact. Hence, by the definitions, a space X is A-collectionwise normal and
countably paracompact if and only if X satisfies one of the following two conditions:
(i) X is A-expandable and X € A-PN; (ii) X is almost A-expandable and X €
M-PN. Thus, we get several characterizations of a A-collectionwise normal and
countably paracompact space by combining one of the conditions in Theorems 5.1
and 5.2 with one of the conditions (1)-(9) in Theorem 3.1 and Remark 3.2. In
particular, we have the following consequence which is a mapping analogue of the
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Dowker’s characterization [6] of collectionwise normal and countably paracompact
spaces.

Corollary 5.3. For an infinite cardinal X\, the following conditions on a normal
space X are equivalent:

(1) X is A-collectionwise normal and countably paracompact.
(2) For every upper semi-continuous map g : X — co(\), there exists a contin-
uwous map f: X — co(N) such that g < f.

For other characterizations of collectionwise normal countably paracompact spaces,
see [21].

We complete this paper with the following characterization of paracompact
spaces which is just like Corollary 5.3, only it deals with maps to Cp()), where
A is the space of all ordinals less than A with the usual order topology.

Theorem 5.4. For an infinite cardinal A\, the following conditions on a mormal
space X are equivalent:

(1) X is A-paracompact.

(2) For every space Y, with w(Y) < A, and for every upper semi-continuous
map g : X — Co(Y), there exists a continuous map f : X — Co(Y) such
that g < f.

(3) For every upper semi-continuous map g : X — Co(X), there exists a con-
tinuous map f: X — Co(\) such that g < f.

In the proof of Theorem 5.4, the normality of X is only used to apply Michael’s
result in the implication (1) = (2). Thus, we have the following corollary.

Corollary 5.5. The following conditions on a Hausdorff space X are equivalent:
(1) X is paracompact.
(2) For every space Y and every upper semi-continuous map g : X — Co(Y),
there exists a continuous map f: X — Co(Y) such that g < f.
(3) For every infinite cardinal A and every upper semi-continuous map g : X —
Co(N), there exists a continuous map f: X — Co(N\) such that g < f.

Concerning the statements of Corolary 5.5, the following question naturally
arises.

Problem 5.6. Is a space X paracompact provided for every space Y and every
two maps g,h : X — Cy(Y) such that g is upper semi-continuous, h is lower
semi-continuous and g < h, there exists a continuous map f : X — Co(Y) with
gsf<h?
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THE BAIRE SPACE ORDERED BY EVENTUAL DOMINATION:
SPECTRA

JORG BRENDLE*

ABSTRACT. These are notes of the author’s talk on various types of spectra as-
sociated naturally with the eventually domination ordering on the Baire space
w®, given at the General Topology Symposium at Kobe University in December
2002. The report comes in two parts: in the first half, we present an outline
of the lecture, giving ideas of some of the arguments without going too deeply
into details. The second part presents the technical niceties of some proofs.
This part was circulated previously under the title Chubu Marginalia [2].

1. OUTLINE OF THE LECTURE

The Baire space w* is the set of all functions from the natural numbers w to w,
equipped with the product topology of the discrete topology. Given f,g € w® say
that g eventually dominates f (f <* g in symbols) if f(n) < g(n) holds for all but
finitely many n € w.

A family F C w¥ is called unbounded if there is no g € w* with f <* g for all
feF. F Cw¥is said to be dominating if for all ¢ € w* there is f € F with
g <* f. It is easy to see that a dominating family is also unbounded. We let b :=
min{|F|; F C w* unbounded}, the (un)bounding number. d := min{|F|; F C w®
dominating} is the dominating number. The cardinal invariants b and 9 characterize
the combinatorial structure of (w*, <*).

Fact 1.1. 8 < b <cf(d) <0 <c and b is regular.

(Here, ¢f means cofinality, and ¢ = |2¥| = |R| stands for the size of the contin-
uum.)

As a leitmotiv for this talk we address: What other notions can be used to
describe the combinatorial structure of (w*,<*)?

dodd

For a given preorder (P, <) (that is, < is reflexive and transitive, but not necessarily
antisymmetric), Fuchino and Soukup [4] defined the following four spectra.

(i) the unbounded chain spectrum ST(P), the set of all regular cardinals &
such that there is an unbounded increasing chain of length x in P;

(ii) the hereditarily unbounded set spectrum &"(P), the set of all cardinals x
such that there is A C P of size k such that all subsets of A of size k are
unbounded in P while all subsets of A of size less than k are bounded in
P;

*The author is supported by the Kobe Technical Club KTC (ffiF K%/ LR ELLY)
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(iii) the unbounded set spectrum &(P), the set of all cardinals x such that there
is unbounded A C P of size k such that all subsets of A of size less than
k are bounded in P;

(iv) the unbounded family spectrum &°(P), the set of all cardinals & such that
there is a family F C P(P) of size k with |JF being unbounded while for
all G C F of size less than &, |JG is bounded.

Clearly 6'(P) C 6"(P) C &(P) C &°(P).

Sodod
We shall study the connection between these spectra for (P, <) = (w*,<*). It is
easy to see that b = min &'(w¥, <*) = min &*(w*, <*). Fuchino and Soukup [4]
asked:

<*) ¢ &"w¥,<*) consistent? Is
&M (wv, <*) € B(w¥, <*) consistent? Is &(w*, <*) C &°(w¥, <*) consistent?

More concretely:

Question 1.3. Is Xy € " (w¥, <*)\ &1 (w¥, <*) consistent? Is Ry €
S(w?, <)\ B (w¥, <*) consistent? Is Ry € G%(w¥, <*) \ &(w®, <*) consistent?

Define b’ to be the supremum of cofinalities of unbounded well-ordered chains
in w¥. b* is the minimal £ such that every unbounded family F C w* has an
unbounded subfamily of size k.

Fact 1.4. b/ = sup(&'(w¥, <*)), b* = sup(&S(w®, <*)), as well as b < b’ < b* < 0.

The first instance of the above question has been answered a couple of years ago
in joint work with LaBerge [1].

Theorem 1.5. It is consistent that Ny € &"(w?, <*)\ &1 (w¥, <*) and ¢ = N,.

dodd

We proceed to present the main ideas of the proof of Theorem 1.5. Let A be a set.
C 4 denotes Cohen forcing with index set A, that is, the collection of finite partial
functions s : A X w — 2 ordered by reverse inclusion. The latter means that ¢ < s
iff t O s. For each a € A, C4 adds a Cohen—generic real ¢,. Let X C A. Then
Cx <o Cy4 (we say Cx completely embeds into Cu), ie., Cx is a subforcing of
C4, and the “intermediate” generic extension via Cx is a submodel of the generic
extension via Cy4.

As usual, D denotes Hechler forcing, that is, the collection of all pairs (s, f)
where s € w<¥, f € w*” and s C f. We order D by stipulating (¢,g) < (s, f) iff
t O sand g > f everywhere. D generically adds a real d which eventually dominates
all ground model reals.

In the extension Vx via Cx, let Dx denote Hechler forcing in the sense of Vy.
This means of course that Dx = {(s, f); f € Vx Nw*“}.

We are ready to describe the forcing we are going to use. Let V = CH. Set

P=C,, * H<” D,
a<wsz

(Here, * denotes iteration as usual, and the superscript <* means we are forcing
with the finite support product.) Let W be the generic extension of V' via P.
Let us list a few properties of the forcing P and of the resulting model W.
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(a) P is ccc; so it preserves cardinals.

(b) As above, let ¢, @ < wa, denote the Cohen reals adjoined by C,,. Also
let d,, o < wa, denote the Hechler reals adjoined by D, (over the generic
extension via C,,,). Then ¢, <* dg <= a < 0.

(c) Let g be a P-name for a real. Then IFp [{a < wa; éo < ¢} < Ny (this is
so because of the way P factorizes as a product).

(d) In W, let F = {ca; o < wa}. Then F witnesses Ry € &"(w, <*), by (b)
and (c).

(e) Ry ¢ G (w*,<*). In fact, there are no well-ordered wy—sequences in
(W, <*)in W.

We briefly describe the proof of (e) for this is the heart of the matter. It is based
on the following two lemmata.

Lemma 1.6. (Kunen) Assume CH. There are no well-ordered wy—sequences in
(w¥,<*) in V4 (the extension via Cy4 ).

This is proved via a standard “isomorphism—of-names” trick.
1% 1%

Lemma 1.7. (Interpolation trick) Let Q and R be p.o.’s. Assume hy and hy are Q-
names for reals, and ¢ is an R-name for a real such that (q,r) lFoxr h1 <* g <* ho.
Then qlkFg “If e w? NV : hy <* f <* hy”

Given a sequence { fo; a0 < wa} of P-names use a A—system argument to make
supports nice (this uses CH) and step into an intermediate extension (essentially a
Cohen extension) such that the fa are adjoined by a product over this intermediate
extension. Assume lFp “the fa are well-ordered by <*.” Using Lemma 1.7, we can

interpolate reals g, from the intermediate extension. This contradicts Lemma 1.6.
O

hodd

Recently we proved:

Theorem 1.8. It is consistent that Ry € &(w*, <*)\ &"(w¥, <*) and ¢ = N3.
With more work one can do better.

Theorem 1.9. [t is consistent that Ry € &(w¥, <*)\ &"(w¥, <*) and ¢ = Ry.

The proof of Theorem 1.8 was briefly sketched at the end of our lecture. Since
we include a detailed account of these results below in Section 2, we shall not give
this outline here.

We conjecture that similar techniques can be used to get a model where Ny €
&% (w¥, <)\ 6(w¥, <*), but so far we have been unable to prove this.

More recently, we obtained:

Theorem 1.10. (see [3]) It is consistent that ¢ = Ny, Ny € S(w¥, <*) and there is
no definable relation A C (w*)? such that A well-orders some subset {fo, € W¥; a <

wa} of the reals (i.e., o < B iff (fa, f3) € A).

In this model, we obviously have Ry ¢ &T(w¥, <*). As a matter of fact, it is not
difficult to show that Ny € Gh(w“’, <*) is sufficient to construct a definable well-
ordering of a set of reals of length wy [3]. Therefore, Theorem 1.10 is a strengthening
of Theorem 1.9. See [3] for details.
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2. TECHNICAL DETAILS

Assume A and B are disjoint sets and G C A x B is a bipartite graph. We will
define the poset P = PY.

For X C A, Cx denotes the algebra for adding | X| many Cohen reals with index
set X. Clearly, Cx <o Cy for X CY. Fix b € B and let X;, = {a € 4; (a,b) € G}.
In the generic extension via Cx, we have Hechler forcing ID which we denote by
Dx,. The p.o. P we force with is a two—step iteration given by

P= (CA * H<w DX;,
beB
Here H<“’ means that we take the finite support product of the partial orders Dy,
in the generic extension via C4. Conditions p € P can be canonically represented
by
p=(st,(t,hy); ac FP,be GP)
where F'? C A and G? C B are finite. So this means s, € C(q and Ic, (17, ) €

DXb. We let supp(p) = FP U GP, the support of p.
For later use we notice two facts.

Fact 2.1. Given X C A andY C B, we form IP’%Y =Pxy =Cxx Hzfewy DXﬂXb-
Then PXJ/ <o P.

Proof. Let p = (s£,(t?,hY); a € FP,b € GP) € P. We need to find a reduction
po € Px y of p. We shall have py = (s2°, (£}°, hfo); a € FPo b € GP°) where
FPo = FPNX
GPo =GPNY
sPo = sP for a € FP°
ty° =t} for b € GP°
and the hfo are given as follows.

Write s? = (s£; a € FP) € C4. So sP° = (s£; a € FP°) = sP|Cx € Cx. For
b € G™ let supp(h?) C X, be what is needed to decide hY. By cccness of Cy,,
supp(h?) is countable. Set X0 = X N Usecro supp(h?). Also let X' = A\ X. So
X0 and X! are disjoint, and X° is countable. Let {s,; n € w} enumerate the
conditions of Cxo which are below sP°[Cxo(= s?[Cxo). Recursively find numbers
Lo kp (kK <nandbe GP), and conditions ¢, € Cxo, u, € Cx1 such that ¢, < s,
and the u,, form a decreasing chain below s?[Cx: and such that

tn Uuy, - hf(k) =lpp for kK <nandbe GP.

This is clearly possible. Note that for b € GP°, we actually have (¢, Uu,)[su pp(hi’) I+
hY (k) = Ly g for k < n.

Now define the Cxnx, name h° by stipulating that t,, [supp(h?) forces h2° (k) =
Lo kb for K < n. We need to verify this is well-defined, that is, no two compatible
conditions force contradictory statements. To see this, fix k and assume ¢, [supp(hg )
and t,, [supp(hf) are compatible for some m,n > k. Since the u; are decreasing,
(tn, U un)[supp(hf) and (ty, U um)[supp(hg) must be compatible as well. So they
must force the same value to hf(k), ie., £y i = fm kb as required.

This completes the definition of pg. We leave it to the reader to verify that given
g0 < po, qo € Px y, there is a common extension ¢ € P of gy and p. [
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This entails for example that if f and g are Px y-—names, then
e f<*g <= IFpyy f<"g

Fact 2.2. Given Xo,Xl - A, Yo,Yi - B, X = XoﬂXl, Y = YoﬂYl, and
bijections v : Xog — Xy, w : Yy — Y] fizing X and Y respectively, if (a,b) € G
iff (v(a),w(b)) € G for all a € Xo and all b € Yy, then Px,y, and Px,y, are
. . . . . . _ 1 X0,Yo ;
canonically isomorphic via an isomorphism ¢ = ¢y "y, fizing Px y.
Note this means that if f is a Px y-name for a real, § is a Px, y, name for a
real and p € Px, y,, k € w are such that

p “_X(),Yo vn > k (f(TL) < g(n))
then if ¢(g) is the image of the name ¢ we have

o(p) IFx, v, Yn >k (f(n) < ¢(g)(n))
Here, ¢(p) is gotten from p as follows. F?®) = y(FP), G¢P) = w(GP), s8®) —
35,1(@ for a € FoP), tf(p) = t’;,l(b) for b € G and hf(p) is the image of hi,l(b)
under the isomorphism between Cx, and Cx, induced by v, for all b € G¢®),
Furthermore p and ¢(p) are compatible (in Px,ux,,v,uy; ). (may not need this???
details see handwritten notes)
Denote the Cohen reals added by C4 by {c4; a € A}, and the Hechler reals
adjoined by the finite support product, by {dy; b € B}.
Sohd
Proof of Theorem 1.8. Assume GCH. Let A and B be sets of size N3, without
loss A = B = ws. Recursively construct a bipartite graph G C A x B such that
(i) for all countable Y C B there is a € wy such that (a,b) ¢ G forallbe Y
(ii) for all X C A with X C wo and |X| < Ny, there is b € B such that
(a,b) e G forallae X
(iii) for all pairwise disjoint countable X, X, C A (« < ws), all pairwise disjoint
countable Y)Y, C B (a < ws), all {z,; n € w} C 9XWacw, KXo all
{yn; n € w} C 2V Yo and all bipartite graphs Go C w X w, there
are Q) C wy of size Ry as well as {a,; n € w} C A disjoint from X, X, and
{bn; n € w} C B disjoint from Y, Y, such that

a<wy

(a,b,) €G <= z,(a)=1

foralla € X U, cqXa and all n € w,

ae)
(anab) €0 — yn(b) =1

forallbe YU, .qYs and all n € w and

acl)
(an,bm) €G <= (n,m) € Gy
for all n,m € w.

This is done by a recursive construction of length ws, taking care of (ii) in the first
step and of (iii) in the remaining steps. Since we are allowed to thin out to a set 2
we can guarantee that (i) stays valid along the construction. For example we could
stipulate that for all b € B, the set X; = {a € wa; (a,b) € G} is non—stationary in
wy. Details are left to the reader.

It is clear by |A| = |B| = N3 that the size of the continuum will be Nj.
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Lemma 2.3. The Cohen reals {cq; a < wa} are unbounded in the P—extension, yet
every subfamily of size Ry is bounded.

Proof. Let g be a P-name for a real. There are X C A countable and ¥ C B
countable such that ¢ is a Px y-name. By (i) there is a € wy \ [J,cy Xp. Note that
for such a, Pxygq),y = Px,y X Cqy. That is, ¢, is still Cohen over the extension
via Px y and, in particular, it is not bounded by the interpretation of g.

That every subfamily of size N; is bounded immediately follows from property
(ii). 0

Main Lemma 2.4. In the P—extension, the following holds: Assume {fqo; a < wa}
is such that for all B < wa, {fa; a < B} is bounded. Then there is Q C waq, |Q| = No,
such that {fo; o € Q} is bounded.

Proof. Let {fa; a <ws} and {gs; B < wz} be P-names such that

Fe fa <" 9o
for all @ < § < wy. By CH and a A-system argument we may assume that there
are pairwise disjoint countable sets X, X, Ag C A (o, f < wo) and pairwise disjoint

countable sets Y, Y., Bg C B (o, < wq) such that all f,l are Pxyx, yuy, hames
and all gg are Pxya, yup,—names. By the remark after Fact 2.1,

. ..
|FPXUX@UA5,YUYO¢UBB Ja < 9s

for all a < 8 < ws.
We may further assume that for o # 3 we have bijections v, g : XUA, — XUAg
and wq g 1 YUB, — YUBg fixing X and Y respectively such that for alla € XUA,

and all b € Y U B,, we have (a,b) € G iff (va,g(a),wa (b)) € G. By Fact 2.2, this

. . XUAq Y UBq
means that we get an isomorphism ¢ = ¢§ = ¢y 45 'yup; between Pxua, yus,

and Pxya,,yus,- We may also suppose that this induced isomorphism identifies
the corresponding names g, and gg, i.e., ¢(Jo) = gs. List Ay = {aan; n € w}
such that vy g(aa,n) = agn and By = {ba,n; 7 € w} such that we, g(ba,n) = bgn.
Let Gy be such that (n,m) € G iff (aq n,ba,m) € G (note this is independent of the
choice of ).

Next, for each « there is a cofinal set C, C wo\ (a+1) such that for all 5, 3’ € Cj:
(a,b) € G iff (a,wpp (b)) € G for all @ € X, and all b € Bg, and (a,b) € G iff
(vg,p(a),b) € G for all a € Ag and all b € Y,. Define z,, : X U Xo — 2 by

a<wsz

1 if (a€ X and (a,bg) € G) or

ZTn(a) = (a € Xy and (a,bg,) € G for § € Cy)
0 otherwise
and yp, : Y UU, oy, Yo — 2 by

1 if (beY and (agn,b) € G) or
Yn(b) = (b e Y, and (agn,b) € G for 8 € Cy)
0 otherwise

(again this is independent of the choice of 3).

We may now find  C ws of size Ry and A, = {an; n € w} C A, B, = {by; n €
w} C B satisfying the requirements of clause (iii). Note this means that for any
o € Q and any € C, we have functions vg,, : X UX,UAg - X UX,UA,,
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and wg, : Y UY,UBg —- YUY, UB,, fixing X UX, and Y UY, respectively
such that

(a,0) €G = (v8.u,(a), wpw, (b)) €G
foralla € XUX,UAgand allb e YUY, U Bg. By Fact 2.2 we get a canonical
isomorphism ¢, : Pxux,uasyUYaUBy — PXUXaUAw, YUYaUB., - Let gu, be the
d)g;image of gg (note this is independent of the choice of 3). By the discussion after

Juw,- By the remark after Fact 2.1, this is also true in the P-generic extension. O

O

Fact 2.2 and the assumption on f,, and 3, we see that FBx U xa 0wy vUvaUBw, fo <

hodd

Proof of Theorem 1.9. Assume C'H. Construct first a bipartite graph H C wy X wy
such that

(i) for all countable Y C wy there is © € w; such that (z,y) ¢ Hforally € YV
(ii) for all countable X = {z,; n € w} C wy, all countable ¥ C w;y and all

[ wx X xw — 2 there are countable X' = {z], ,.; n,m € w} C w;
disjoint from X and countable Y = {y/,; m € w} C wy disjoint from ¥
such that (x,,y,,) € H for all n,m € w,

/
n,m» Y

(z JEH = (zn,y)€H

for all n,m € w and y € Y, as well as
(T vp) €EH = f(m,zn,0) =1
for all n,m, ¥ € w.

Using CH, 'H can be constructed by an easy recursion of length wy, taking care of
(i) and (ii) alternately.

Next let A = wy X wy and B = wylUw;. G C A x B is the bipartite graph given
by

(¢m,¢Hheg = ¢<(¢

(Cm,n)eg <<= (mn)eH

for all ¢,¢’ € wy and 1,7’ € w;. We consider forcing with P = P9 as before. Since
|A| = |B| = Ng, it is immediate that the size of the continuum will be Ny.

By (i) and definition of G, properties analogous to (i) and (ii) of the previous
proof hold and it follows that the Cohen reals witness that Ny € G(w®, <*). So we
are left with showing:

Main Lemma 2.5. In the P—extension, the following holds: Assume {fq; o < wa}
is such that for all B < wa, {fo; a < B} is bounded. Then there is Q C wa, | = Ng,
such that {fo; a € Q} is bounded.

Proof. As in the previous proof we have fa, gp and countable pairwise disjoint
sets X, X,,Ag € A as well as countable pairwise disjoint sets Y,Y,,Bg C B,
o, < wy. Let YO = Y Nwy and let Y = Y Nw;, the two disjoint pieces Y is
made off. By enlarging supports, if necessary, we may further assume there are
0 < wy and (,&n,a < wa, such that X = X0 x 0, X, = X x 0, Ag = A% X 0,
Y!' C 6, Y,,Bs C ws, and sup(X?) < (o < ... < {u < min(X?) < sup(X?) <
€o < min(AY) < sup(AY) < (g1 and sup(Y?) < (o < ... < (o < min(Y,) <
sup(Ys,) < &n < min(B,) < sup(Ba) < (a41..- This means that for all a < 3, all
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a € XUX, and all b € Bg we have (a,b) € G and for alla € Ag and all b € YOUY,,
we have (a,b) ¢ G. List 0 = {z,; n € w}. Also list Ag = {(ag,m,zn); n,Mm € w}
(so A% = {agm; m € w}) and Bg = {bgm; m € w} in such that way that
((@q,m» Tn),bae) € G iff ((agm,xn),bpe) € G, for all o, 5 and all n, m, ¢ (note that
by definition of G, this depends only on m and ¢ and not on n; this is irrelevant,
however).

Apply (ii) with the X there being {z,,; n € w} = 0, the Y there being Y C 6 and
[ given by f(m,xn,£) = 1iff ((ag,m,2n),bs¢) € G. We get X' = {x, ,,; n,m € w}
and By, =Y’ = {y/,; m € w} as stipulated in (ii). Choose any ag > (o from ws.
Let A, = {ao} x X'. For a < 3, define v =vg,, : XUX,UAg - X UX,UA,,
and w = wgw, : Y UBg — Y U By, by v(agm,zn) = (a2, ,,) and w(bsm) =y,
(identity otherwise). Then we have (a,b) € G iff (v(a),w(b)) € G for all a €
XUX,UAgandallbeY UBg and all @ < . (check details!) By Fact 2.2, this
means we get an isomorphism ¢ = gi)& s Pxux.uasyuB, — IP’XUXaquTyUBwQ. As
in the previous proof, let ., be the gf)ngimage of gz. The following claim finishes
the proof.

Main Claim 2.6. Given p € P and g < wa, there are ¢ < p and o > ap with
PIF Gu, =7 fa-

Proof. Let p € P and oy < we. Fix o > « such that supp(p) NY, = 0. We need to
find ¢ < p and k € w such that ¢ I- “g,,(n) > fa(n) for all n > k.”

First note we may assume p € PXUXaqu27yUBw2. The point is that under this
assumption we will find ¢ € Pxux,ua,,,yuv,uB,,- Now, if p is arbitrary, we may
first consider its reduction p to Pxyx, u Auy,YUYaUB., which actually must belong to
JP’XUXQLJA%)YUBWZ. Thus we get ¢ < p as required with g € PXUXQUAMZ,YUYQUBwf
So ¢ and p have a common extension.

Let p* = ¢~ (p) € Pxux,uas,vuB, Where 3 > a is arbitrary. There are ¢* < p*,
q* € Pxux,u4,,YUY,UBs, and k € w such that ¢* IF “gg(n) > fa(n) for all n > k.”

The main technical difficulty with this proof now is that Pxyx,uas yuv,uB,
need not be isomorphic to Pxux,ua,,,yuv,uB,,, S0 we cannot go back directly.
Instead, we shall interpolate a name he between fa and ¢g in such a way that he
does not depend on Y, nor on (3.

The crux of the matter is that Pxux,uasyuy,uB, is the amalgamation of
PXUXQ,YUYQ and ]P)XUXQUAB,YUBg over ]P)XUXO“Y- This is so because (a,b) §é Q
for all a € Ag and all b € Y,, which means that the Hechler reals adjoined by Y, do
not depend on the Cohen reals adjoined by Ag.

To be more explicit, let ¢* be the projection of ¢* to Pxux,uas,yuBs. Next,
let @5 be the projection of ¢* to r.0.(Pxux,,y) (note that, since we are work-
ing with projections in cBa’s here, ¢* does not necessarily belong to Pxyx, v,
but this is irrelevant here). Finally, define ¢§ € r.0.(Pxux, vuy,) as follows.
gglro.(Pxux,,y) = ¢ and ¢j|Ye = ¢*Y,. The latter means that G NY, =
G? NY, and (tgg, hgg) = (tg*,ﬁg*) for b € G% NY,. This makes sense because all
such izg* are C(xux.uas)nx, names and therefore, as Ag N Xy, = 0, Cxux.)nx,
names. Finally notice that ¢j is the projection of ¢* to r.0.(Pxux, vuy, )-

Step for a moment into the generic extension W via Pxyx,,y such that g5 be-
longs to the generic filter. In W, forcing with Pxux,ua,,yuy,uB, is nothing but

forcing with the product of Pxyx, yuy, and Pxux,uasvuBs- (S0 Pxux,uas yuv.uB,
is indeed the amalgamation as claimed above.) This means we may think of ¢* as
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the pair (g3, 7*). Since
(g5,q") IF “ga(n) > fa(n) for alln > k,”

since fa is a Pxux,,yuy, name, and since gg is a Pxyx,uA,,yuB,Name, we may
find h, € W Nw* such that

@ IF “ha(n) > fo(n) for all n > &7
and

7 “4(n) > ha(n) for all n > k.
(Simply let hy(n) = sup{m; there is rf; < g in Pxyx. yuy, such that rg |- fo(n) =
mj.) .

Back in the ground model, let h, be a Pxyx, y—name for hy. Let § = &(G").
Since ¢ fixes Pxux, v, § < ¢ and ¢(hqa) = hqo. So we get (see the discussion after
Fact 2.2)

Gk “guy(n) > ho(n) for all n > k.7
In Pxux,uA.,,YUv.UB.,, define ¢ such that ¢[Pxux,ua.,,yuB, = ¢ and q[Yy =
@4 1Ya(= q*Ya). As before, the latter means that GINY, = G%NY, and (t{,h]) =
(te, hgo) for b € GINY,. (This is unproblematic because the hzo are C(xux,)nx,—
names.) ¢ < @ is trivial but, using ¢ < g and the way ¢ and g were defined, we
also get ¢ < ¢;. Therefore

qIF “ha(n) > fa(n) for all n > k7

so that )
qlF “gu,(n) > fo(n) for all n > k,”
as required. 0
|
O
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PRODUCTS OF 2 SPACES AND PRODUCTS OF 3 SPACES

YASUSHI HIRATA AND NOBUYUKI KEMOTO

A space is paracompact (subparacompact, metacompact) if for every open cover
U, there is a locally finite open (o -locally finite closed, point finite open) refinement
VY of U. A space is submetacompact if for every open cover U, there is a sequence
{Vn : n € w} of open refinements of U such that for each point x, there is n € w
such that V,, is point finite at x. It is well known that paracompactness implies
both of subparacompactness and metacompactness, and submetacompactness is
a common weakening of subparacompactness and metacompactness. We discuss
on these four properties (and its restricted version) of product spaces of ordinal
numbers with the usual order topology. The Greek letters «, 3, ... denote
ordinals. One of basic results is:

Proposition 1 ([8]). Let A and B be subspaces of o and X = A x B. Then
paracompactness, subparacompactness, metacompactness and submetacompactness
of X are equivalent.

Thus, these properties are equivalent for “products of subspaces”. But in general,
these properties need not be equivalent for “subspaces of products”.

Proposition 2 ([7]).
(1) For every subspace X of o, metacompactness and submetacompactness of
X are equivalent. Thus paracompactness of X implies subparacompactness
and subparacompactness of X implies metacompactness.
(2) There is a metacompact subspace of (we+1)% which is not subparacompact.
(3) There is a subparacompact subspace of (w1 +1)? which is not paracompact.

Now let’s consider the restricted versions of these four properties. A space is
countably paracompact if for every countable open cover U, there is a locally
finite open refinement V of /. Countable subparacomactness, countable meta-
compactness and countable submetacompactness are similarly defined. It is well
known that countable metacompactness coincides with countable submetacompact-
ness and it is a common weakening of countable paracompactness and countable
subparacompactness. But, as is witnessed by the product wy X (w1 + 1), countable
paracompactness does not imply countable subparacompactness. The square of Sor-
genfrey line is countably subparacompact but not countably paracompact. Thus
countable subparacompactness and countable paracompactness are incomparable.
Normal (Subnormal) countably metacompact spaces are countably paracompact
(countably subparacompact), where a space is normal (subnormal) if every pair of
disjoint closed sets are separated by disjoint open sets (Gs-sets). Of course, normal
spaces are subnormal and countably subparacompact spaces are subnormal. But
it is well known that countable paracompactness and normality are incomparable.
Now we focus on these restricted properties of subspaces of Wi, n < w.
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One of basic results about countable paracompactness is:

Proposition 3 ([3]). Let A and B be subspaces of wy and X = Ax B. Then X
is countably paracompact iff X is normal iff A or B is non-stationary or AN B
s stationary.

Note that for disjoint stationary sets A and B of wi;, X = A x B is neither
normal nor countably paracompact. It is natural to ask whether normality and
coutable paracompactness are equivalent for every subspace of w?. A consistently
affirmative answer is known:

Proposition 4 ([6]). Assuming V =L or PMEA, normality and countable para-
compactness are equivalent for every subspace of w? .

But, it still remains open whether this is a theorem of ZFC. Note that Proposition
5 bellow shows that normality implies countable paracompactness in ZFC.

For countable metacompactness, we have the following unexpected results.

Proposition 5 ([4]). All subspaces of w? are countably metacompact. Thus normal
subspaces of w? are countably paracompact.

Proposition 6 ([5]). All subspaces of W}, n € w, are countably metacompact, but
there is a subspace of wy which is not countably metacompact.

For countable subparacompactness, we also have the following unexpected result.
Proposition 7 ([2]). All subspaces of w? are countably subparacompact.

So, as in the countably metacompact case, we have no doubt to conjecture that
all subspaces of w}, n € w, are countably subparacompact. But unfortunately we
obtain:

Theorem 8 ([1]). There is a subspace of w} which is not countably subparacompact.

The subspace X = {{a,,7) € w? : a < B <A} \ {{a,a,0) € W3 1 a < wi}
of w} is the desired one. Indeed, we can show that the disjoint closed subsets
Fy = {{o,3,7) € X : a =} and F; = {{a,8,7) € X : B = «} cannot be
separated by disjoint Ggs-sets. So X is not subnormal, and therefore X is a non-
countably subparacompact subspace of {(a,3,7) € w} : @ < 3 < ~}. But some
special subspaces are hereditarily countably subparacompact.

Theorem 9 ([1]). All subspaces of {{a,3,7) € w} : a« < B < v} are countably
subparacompact. More generally, all subspaces of {x € W} : x(0) < (1) < ... <
x(n —1)} are countably subparacompact.
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HYPERSPACES WITH THE HAUSDORFF METRIC

MASAYUKI KURIHARA, KATSURO SAKAI, AND MASATO YAGUCHI

1. INTRODUCTION

This note is a presentation of the results obtained in the paper [8].

Let X = (X, d) be a metric space. The set of all non-empty closed sets in X is
denoted by Cld(X). On the subset Bdd(X) C Cld(X) consisting of bounded closed
sets in X, we can define the Hausdorff metric dy as follows:

du(A,B) = max{ sup d(x, A), supd(z, B)}7

z€B z€A
where d(z,A) = inf,cad(zr,a). We denote the metric space (Bdd(X),dy) by
Bddy(X). On the whole set Cld(X), we allow dig(A, B) = oo, but dy induces
the topology of Cld(X) like a metric does. The space Cld(X) with this topology is
denoted by Cldy(X). When X is bounded, Cldy(X) = Bddy(X). Even though
X is unbounded, Cldg (X) is metrizable. Indeed, let d be the metric on X defined
by d(z,y) = min{l,d(z,y)}. Then, dy is an admissible metric of Cldg(X). It
should be noted that each component of Cldg(X) is contained in Bdd(X) or in
the complement Cld(X) \ Bdd(X). Thus, Bddg(X) is a union of components of
Cldg (X). On each component of Cldy(X), dy is a metric even if it is contained
in Cld(X) \ Bdd(X). Then, we regard every component of Cldy(X) as a metric
space with dy.

When X is compact, it is well-known that Cldg(X) (= Bddg (X)) is an ANR
(an AR)! if and only if X is locally connected (connected and locally connected)
[14]. However, in case X is non-compact, this does not hold. In [8], we construct a
metric AR X such that Cldg(X) is not an ANR and give a condition on X such
that Cldg(X) is an ANR. Due to our result, Cldy(X) can be an ANR even if X
is not locally connected.

2. MAIN RESULTS AND A COUNTER-EXAMPLE

Let X = (X,d) be a metric space. For A C X and v > 0, we denote
N(A,v)={z € X |d(z,A) <~} and

N(A7) ={z € X |d(z,4) <~}
When A = {a}, we write N({a},v) = B(a,v) and N({a},7) = B(a,)
In [10], Michael introduced uniform AR’s and uniform ANR’s. A uniform ANR
is a metric space X with the property: for an arbitrary metric space Z = (Z,d)
containing X isometrically as a closed subset, there exist a uniform neighborhood

LAn ANR (an AR) means an absolute neighborhood retract (an absolute retract) for metrizable
spaces.

59



60 M. KURIHARA, K. SAKAI, AND M. YAGUCHI

Uof X in Z (i.e., U = N(X,~) for some v > 0) and a retraction r : U — X which is
uniformly continuous at X, that is, for each € > 0, there is some § > 0 such that if
x € X, z€ U and d(z,z) < 6 then d(x,r(z)) < e. When U = Z in the above, X is
called a uniform AR. A uniform ANR is a uniform AR if it is homotopically trivial,
that is, all the homotopy groups are trivial. In [11], it is shown that a metric space
X is a uniform ANR if and only if every metric space Z containing X isometrically
as a dense subset is a uniform ANR and X is homotopy dense in Z, that is, there
exists a homotopy h: Z x I — Z such that hy =idz and h(Z) C X for t > 0.

For each 1 > 0, a finite sequence (z;)¥_, of points in X is called an n-chain if
d(zi,w;—1) < n for each i = 1,..., k, where k is the length of (x;)k_,. The diameter
of (z;)¥_, means diam{xz; | i = 0,1,...,k}. When 2o = x and x; = y, we call
(z;)F_y an n-chain from x to y and we say that z and y are connected by (x;)¥_.
It is said that X is C-connected (connected in the sense of Cantor) if each pair of
points in X are connected by an n-chain in X for any n > 0. Now, we say that
X is uniformly locally C*-connected if for each € > 0 there exists § > 0 with the
following property:

(ulC*) For each n > 0, there is k € N such that each pair of d-close points of X
are connected by an n-chain with the length < k£ and the diameter < .

It is easy to see that a metric space is uniformly locally C*-connected if it is uni-
formly homeomorphic to a uniformly locally C*-connected metric space.

A collection A of subsets of X is said to be uniformly discrete if there exists
some 0 > 0 such that the d-neighborhood B(z, d) of each x € X meets at most one
member of A, that is,

inf{dist(A4,A") | A# A" € A} >0,
where dist(A4, A") = inf{d(x,2’) | z € A, 2’ € A’}. The following is the main result
in [8]:
Theorem. For every uniformly locally C*-connected metric space X, the collection
of all components of Cld g (X) is uniformly discrete and each component of the space

Cldy (X) is a uniform AR, hence Cldg(X) is an ANR and Bddy(X) is a uniform
ANR.

By the main Theorem above, for every dense subset X of a convex set in a
normed linear space, each component of Cldgy(X) is a uniform AR and Bddg(X)
is a uniform ANR. Recently, Constantini and Kubi§ [4] showed that Bddg(X) is
an AR if X is almost convex, where X is almost convez if for each x,y € X and
for each s,t > 0 such that d(z,y) < s+ t, there exists z € X with d(z,2) < s
and d(y, z) < t. This result follows from the main Theorem because every almost
convex metric space is uniformly locally C*-connected.

Here, we construct a metric AR X such that Cldgy (X) is not an ANR.

Example 1. As a subspace of Euclidean space R?, let X = Unenu {0} X,,, where
Xo={(z,22,2) eR* |z >1, 2 €I} and
X, ={(z,y,1/n) eR® |z >1, 0<y <x/n} fornecN.
Then, X is an AR. In fact, X is homeomorphic to (=) the following space:

(1 x {0}u | J{1/n} x [O,I/n]) x [1,00).

neN
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Moreover, it can be proved that Cldg(X) is not locally path-connected at A =
N x {0} x {0}, hence is not an ANR.

In the above example, X is not a uniform ANR. The following is unknown:

Problem 1. For every uniform ANR X is Cldg(X) an ANR?

3. LAWSON SEMILATTICES WHICH ARE UNIFORM ANR’S

A topological semilattice is a topological space S equipped with a continuous
operator V : S x S — S which is reflexive, commutative and associative (i.e.,
xVex=z,cVy=yVa (xVy)Vz=zV(yVz)). A topological semilattice S is
called a Lawson semilattice if S admits an open basis consisting of subsemilattices
[9]. It is known that a metrizable Lawson semilattice is k-aspherical for each k > 0
([4, Proposition 2.3]).

In [1], it is shown that a metrizable Lawson semilattice is an ANR (resp. an
AR) if and only if it is locally path-connected (resp. connected and locally path-
connected). Here, we consider the condition that a metric Lawson semilattice is a
uniform ANR.

It is said that a metric space X is uniformly locally contractible if for each € > 0,
there exist 6 > 0 such that the d-ball B(z,d) at each € X is contractible in
the e-ball B(z,e). Every uniform ANR is uniformly locally contractible by [10,
Proposition 1.5 and Theorem 1.6]. And, as is easily observed, every uniformly
locally contractible metric space is uniformly locally k-connected for all & > 0.

We have the following characterization:

Theorem 3.1. Let L = (L,d,V) be a metric Lawson semilattice such that
diz V', yVvy') <max{d(z,y),d(',y)} for each z,2’,y,y' € L.
Then, the following are equivalent:

(a) the collection of all components of L is uniformly discrete in L and each
component of L is a uniform AR;

(b) L is a uniform ANR;

(¢) L is uniformly locally contractible;

(d) L is uniformly locally path-connected.

4. THE UNIFORM LOCAL C*-CONNECTEDNESS

For two metric spaces X = (X,dx) and Y = (Y, dy), let C(X,Y) be the collec-
tion of all continuous functions from X to Y. It is said that F C C(X,Y) is uni-
formly equi-continuous if for each € > 0, there is 6 > 0 such that dy (f(z), f(z')) < e
for each f € F and z,2’ € X with dx(z,2") < §. We can characterize the uniform
locall C*-connectedness as follows:

Theorem 4.1. Let D be a countable dense subset of the unit interval I with the
usual metric and 0,1 € D. Then, a metric space X = (X, d) is uniformly locally
C*-connected if and only if for each € > 0, there exist 6 > 0 and F C C(D,X)
satisfying the following:
(i) F is uniformly equi-continuous,
(ii) diam f(D) < e for every f € F,
(i) for each §-close x,y € X, there is f € F with f(0) = x and f(1) = y.
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For a complete metric space X and a dense subset D C I, since every uniformly
continuous map f : D — X extends over I, the following follows from Theorem 4.1:

Corollary 4.2. Every uniformly locally C*-connected complete metric space is uni-
formly locally path-connected.

It is known that Cldy (X) = (Cldg(X),U) is a Lawson semilattice satisfying the
following condition:

dy(AU A", BUB') < max{dy (A, B), du(A’,B’)}
for each A, A', B, B’ € Cldy(X).

Refer to [4, Proposition 2.4] (cf. the proof of [1, Fact 4]). The following can be
proved:

Theorem 4.3. For every uniformly locally C*-connected metric space X, the space
Cldg (X) is uniformly locally path-connected.

Combining this result with Theorem 3.4, we can obtain the main Theorem.

5. THE UNIFORMLY LOCAL ALMOST CONVEXITY

A metric space X = (X, d) is locally almost convez if each x € X has a neigh-
borhood U such that
(lac) for each y,z € U and for each s,t > 0 with s +¢ > d(y, z), there is w € X
such that d(y, w) < s and d(w, z) < t.
It is said that X is uniformly locally almost convez if there is some § > 0 such that
(ulac) for each z,y € X with d(z,y) < ¢ and for each s,t > 0 with s+t > d(z,y),
there is some z € X such that d(z,z) < s and d(y, z) < t.
Note that an almost convex metric space is uniformly locally almost convex. Obvi-
ously, a uniformly locally almost convex metric space is locally almost convex, but
the converse does not hold as the example below:

Example 2. The following subspace of R? inherited the Euclidean metric is clearly
locally almost convex:

X =Nx[0,00)\ [ J{n} x (0,27™).

neN
However, X is not uniformly locally almost convex.

The following are characterizations of uniformly locally almost convexity and
almost convexity:

Theorem 5.1. For a metric space X = (X, d), the following are equivalent:

(a) X is uniformly locally almost convex;

(b) there exists some § > 0 such that for each x,y € X with d(x,y) < § and
for each € > 0, there is some z € X with d(x,z),d(y, z) < %d(a:, y) +e;

(c) there exists 6 > 0 such that for each 0 < A\ < § and for each x,y € X with
d(x,y) < A, there exist a A\-Lipschitz map f : D — X with f(0) = z and
fQ) =y;

(d) there is § > 0 such that N(N(A,s),t) = N(A,s +1t) for each A C X and
for each s,t >0 with s+t < 4.

Theorem 5.2. For a metric space X = (X,d), the following are equivalent:
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(a) X is almost convez;

(b) for each x,y € X and for each € > 0, there is some z € X with d(z, z),
d(y, 2) < 3d(z,y) +e;

(c) for each A > 0 and for each xz,y € X with d(z,y) < A, there exist a \-
Lipschitz map f: D — X with f(0) =z and f(1) = y;

(d) N(N(A,s),t) =N(A,s+t) for each A C X and for each s,t > 0.

As is easily observed, every uniformly locally almost convex metric space X is
uniformly locally C*-connected. Hence, we have the following:

Corollary 5.3. For every uniformly locally almost convex metric space X, each
component of Cldy(X) is a uniform AR and Bddy(X) is a uniform ANR.

One should note that the unit circle S' C R? with the Euclidean metric is
uniformly locally C*-connected but not uniformly locally almost convex.

Recall a metric space X = (X,d) (or a metric d) is convez if for each z,y € X,
there is some z € X with d(x, z) = d(y, z) = d(z,y)/2. A complete metric space X
is convex if and only if for each z,y € X, there is a map f : [0,d(z,y)] — X with
d(z, f(t)) = t. As is easily observed, every almost convex compact metric space is
convex.

Problem 2. Does there exist an almost convex complete metric space which is not
7
convex’!

It is well-know that a Peano continuum? has an admissible convex metric (cf.
[3]). It is said that X is locally convez if each x € X has a neighborhood U which
is convex. Moreover, X is uniformly locally convex if there is some § > 0 such that
for each z,y € X with d(x,y) < § there is z € X with d(z, z) = d(y, z) = d(z,y)/2.

Problem 3. Does a locally connected metric space possess an admissible metric
that is locally convex, (uniformly) locally almost convex, or uniformly locally D-
connected, uniformly locally C*-connected?

6. THE UNIFORMLY LOCAL C-CONNECTEDNESS

In this section, we show that the uniformly local C*-connectedness is a stronger
condition than the uniformly local version of C-connectedness. It is said that X is
uniformly locally C-connected if for each ¢ > 0 there exists § > 0 with the following
property:

(ulC) for each n > 0 and each x,y € X with d(z,y) < J, there is an n-chain

(24)F_y in X from 2 to y with the diameter < e.

Proposition 6.1. If Bddgy (X) is uniformly locally path-connected, then X is uni-
formly locally C-connected.

Every uniformly locally path-connected metric space is uniformly locally C-
connected, but the converse does not hold as the space Q of rationals. Moreover,
every uniformly locally C*-connected metric space is uniformly locally C-connected,
but the converse does not hold as the following example:

2A connected compact metrizable space is called a continuum and a locally connected contin-
uum is called a Peano continuum.
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Example 3. For each n € N, let e, be the unit vector in RY defined e, (i) = 0 if
i #mn and e,(n) = 1. We define a metric space X = (X, d) as follows:

X = U Re,, C RY, d(z,y) = Z min{27", |z(n) — y(n)|}.
neN neN

Then, X is uniformly locally C-connected but it is not uniformly locally C*-
connected.

Remark 1. In Example 3 above, Cldy(X) is locally path-connected, hence so is
Bddg (X) and they would be ANR’s.

As saw in the above, in order that Cldy(X) (or Bddy (X)) is an ANR, it is not
necessary that X is uniformly locally C*-connected. The following problems are
open:

Problem 4. When Bddy(X) is uniformly locally path-connected (hence it is a
uniform ANR), is X uniformly locally C*-connected?

Problem 5. Does the converse of Proposition 6.1 above hold? Or, for each uni-
formly locally C-connected metric space X, is Cldy(X) (uniformly) locally path-
connected?

It is easy to see that every uniformly locally path-connected metric space is
uniformly locally C-connected.

Problem 6. For each uniformly locally path-connected metric space X, is Cld g (X)
(or Bddg (X)) (uniformly) locally path-connected?

Theorem 6.2. Let (X,d) be a uniformly locally C-connected metric space. Then,
each x € X has a neighborhood basis consisting of C'-connected open neighborhood

of x.

It is known that every compact C-connected set is connected. By using this fact,
we can prove the following lemma.

Lemma 6.3. FEvery locally compact uniformly locally C-connected metric space X
is locally connected.

Theorem 6.4. Let X = (X,d) be a totally bounded uniformly locally C-connected
metric space. Then, X has a uniformly locally almost convex metric which is uni-
formly equivalent to d.

By Theorem 6.4 above and Corollary 5.3, we have the following:

Corollary 6.5. For every totally bounded uniformly locally C-connected metric
space X, the space Cldy(X) (= Bddg (X)) is a uniform ANR.

Problem 7. In Theorem 6.4 and Corollary 6.5, is the total boundedness essential?

Problem 8. For complete metric spaces, does the C-connectedness imply the con-
nectedness?

7. FURTHER PROBLEMS AND RELATED RESULTS

The following proposition is shown in [7], which shows the complexity of the
space Cldg (X).



HYPERSPACES WITH THE HAUSDORFF METRIC 65

Proposition 7.1. The space Cldg (R™) has uncountably many components. More-
over, the space of all compact sets Comp g (R™) is one of them and all but this
component are non-separable.

The following is known.

Theorem 7.2. If a metric space X = (X,d) is complete, then so is every compo-
nent of Cldy (X). Consequently, Bddy (X) is complete.

By the main Theorem and Theorem 7.2, for an arbitrary Banach space X, every
component of Cldy(X) is a complete metric AR.

Problem 9. For a Banach space (or a Hilbert space) X, is every component of
Cldg (X) homeomorphic to a Hilbert space?

Even if X is Euclidean space R™, the above is unknown, that is,

Problem 10. Is each non-separable component of Cldg(R™) homeomorphic to a
Hilbert space?

In relation to above problems, some results with different topologies have been
obtained in [1], [6], [12] and [13]. For topologies on hyperspaces, we refer to the book
[2]. Let @ = [L;en[—27",277] be the Hilbert cube and B(Q) = Q\ [ ;en(—27%277)
be the pseudo-boundary of Q). By ¢»(7), we denote the Hilbert space with weight 7.
Let Zg and @Q ¢ be the subspaces of the separable Hilbert space £ and @) respectively,
defined as follows:

65 = {(x;)ien € b2 | ; =0 except for finitely many ¢ € N}.
Qf ={(z:)ien € Q | z; =0 except for finitely many i € N}.

Theorem 7.3. [13] For a Hausdorff space X, the hyperspace Cldp(X) with the
Fell topology is homeomorphic to Q \ {0} if and only if X is locally compact,
locally connected, separable metrizable and has no compact components, whence
Compy(X) = B(Q). In case X is strongly countable-dimensional, Finp(X) =~ Q.

Theorem 7.4. [1], [12] For every infinite-dimensional Banach space X with weight
T, the hyperspace Cld aw (X) with Attouch- Wets topology is homeomorphic to €2(27),

Fingw (X) ~ Comp y (X) & lo(7) x £} and
Bddaw (X) = £5(27) x 1.

Theorem 7.5. [6] For every infinite-dimensional separable Banach space X, the
hyperspace Cldy (X) with the Wijsman topology is homeomorphic to ¢y and

Finy (X) ~ Bddy (X) ~ £y x £5.
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APPROXIMATE RESOLUTIONS AND AN APPLICATION TO
HAUSDORFF DIMENSION

TAKAHISA MIYATA AND TADASHI WATANABE

ABSTRACT. In this paper, we present a new approach using normal sequences
and approximate inverse systems to study Hausdorff dimension for compact
metrizable spaces.

This short article summarizes the main results from the paper [8].

1. PRELIMINARY

For each subset F' of R™ and for each s > 0, the s-dimensional Hausdorff measure
of F is defined as H*(F) = giné Hj(F) where for each § > 0,

H3(F) = inf Y _|U;]°
=1

where the infimum is taken over all open balls U; with radius at most § such that
F C f,lolUi. Here |U;| denotes the diameter of the set U;. The Hausdorff dimension
1=

of F is defined as dimpg F = sup{s : H*(F) = oo} (= inf{s : H*(F) = 0}) [2]. The
present paper concerns Hausdorff dimension for non-Euclidean spaces. More pre-
cisely, we develop a systematic approach using normal sequences and approximate
inverse systems to study Hausdorff dimension for compact metrizable spaces.

Throughout the paper, all spaces are assumed to be metrizable, and maps mean
continuous maps.

For any space X, let Cov(X) denote the family of all open coverings of X. For
any 4,0 € Cov(X), U is a refinement of U, in notation, 4 < U, if for each U € U
there is V' € ¥ such that U C V. For any subset A of X and 4 € Cov(X), let
st(A, ) =U{Ued:UNA#0}and |A={UNA:U e U}. If A= {z}, we write
st(z, ) for st({z},U). For each Y € Cov(X), let stil = {st(U,Ll) : U € U}. Let
st! 4 = stU and st U = st(st™ U) for each n € N. For any metric space (X,d)
and r > 0, let Uq(z,7) = {y € X : d(z,y) < r}, and for each subset A of X, let |A]
denote the diameter of A. For any i € Cov(X), two points z,z’ € X are U-near,
denoted (z,z’) < 4, provided z,2’ € U for some U € 4. For any U € Cov(Y),
two maps f,g: X — Y between spaces are U-near, denoted (f,g) < U, provided
(f(z),g9(x)) < U for each x € X. For each Y € Cov(X) and Y € Cov(Y), let

1991 Mathematics Subject Classification. Primay. 54E35, 54E40, Secondary. 28A78, 28 A80,
54F45, 54C56 .

Key words and phrases. Approximate resolution, normal sequence, Hausdorff dimension, Can-
tor set.
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f) ={fU):U €U} and f~1(B) = {f~1(V):V € T}. Let I denote the closed
interval [0,1], and let N denote the set of all positive integers.

Metrics induced by normal sequences. A family U = {{; : i € N} of open
coverings on a space X is said to be a normal sequence provided st ;1 < i; for
each i. Let XU denote the normal sequence {U; : U; = ;11,7 € N} and st U the
normal sequence {stil; : i € N}. For any normal sequences U = {{{;} and V = {,},
we write U < V provided ; < U, for each i. For each map f : X — Y and for
each normal sequence V = {V;}, let f=1(V) = {f~1(0;)}. For each subspace A of
X, let U]A denote the normal sequence {il;|A} on A.

Following the approach by Alexandroff and Urysohn, given a space X and a
normal sequence U = {4{;} on X, we define the metric dy on X as follows (for more
details, see [6]):

dy(z,2’) = inf{Dy(z,z1) + Dy(z1,72) + - - - + Dy(zn, ')}
where the infimum is taken over all points x1, x2, ..., z, in X, and

9 if (z,2)) £ Uy;
Dy(z,2') =4 3= if (z,2') < but (z,2') £ Uiy ;
0 if (z,2") <y forallie N,

Then the metric dy has the property

1 .
st(z, Uir3) C Ugq,(x, g) C st(z, ;) for each z € X and .
In particular, if U = {4(;} is the normal sequence on a metric space (X,d) such
that 4 = {Uq(z, 3:) : # € X}, then the metric dy induces the uniformity which is
isomorphic to that induced by the metric d. Moreover, if X is a convex subset of a
linear toplogical space, then dy is isometric to the original metric.

Proposition 1. Let U = {;} and V = {0,} be normal sequences on X. Then for
all z,x' € X,

(1) #f U<V, then dy(z,z’) > dv(z, ),

(2) dyu(z,2’) = 3dy(x, ),

(3) dstu(z,2") < dy(z,2') < 3dgu(z,z’).

Approximate sequences and resolutions. An inverse sequence (X;,p;it1)
consists of spaces X, called coordinate spaces, and maps p; ;i+1 : Xiy1 — X;. We
write p;; for the composite p;it1pit1,i+2- - pj—1,; if © < j, and let py = lx,,
and call maps p;; bonding maps. An approzimate inverse sequence (approximate
sequence, in short) X = (X;,4;,p;i41) consists of an inverse sequence (X;,p; i+1)
and 4; € Cov(X;) and must satisfy the following condition:

(AI): For each i € N and U € Cov(X;), there exists i > i such that {;» <
pidd for i > .
An approxzimate map p = (p;) : X — X of a compact space X into an approximate
sequence X = (X;,4;,p;i41) consists of maps p; : X — X, for i € N, called
projection maps, such that p; = p;;p; for ¢ < j, and it is an approzimate resolution
of X if it satisfies the following two conditions:
(R1): For each ANR P, U € Cov(P) and map f: X — P, there exist i € N
and a map g : X; — P such that (gp;, f) < U, and
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(R2): For each ANR P and U € Cov(P), there exists U’ € Cov(P) such
that whenever i € N and ¢,¢’ : X; — P are maps with (gp;,¢'p;) < U,
then (gpiiv, g'pisr) < U for some i’ > i.

The following is a useful characterization:

Theorem 2. ([5, Theorem 2.8]) An approzimate map p = (p;) : X — X =
(X, Y, piig1) is an approzimate resolution of X if and only if it satisfies the fol-
lowing two conditions:
(B1): For each st € Cov(X), there ewists ig € N such that p; '4l; < 4 for
1> g, and
(B2): For each i € N and U € Cov(X;), there exists iy > i such that
Diit (Xl/) - St(pi(X),u) fO’f’ i > 0.

An approximate resolution p = (p;) : X — X is said to be normal if the family
U = {p; 1(Lli)} is a normal sequence. Then each normal approximate resolution p
induces a metric dy, which will be denoted by dy,.

Theorem 3 ([5]). Every compact space X admits a normal approximate resolution
p=(p): X — X = (X;,8;,piitr1) such that all coordinate spaces X; are finite
polyhedra.

Throughout the paper, every normal approximate resolution is assumed to have
the property of Theorem 3. Our notions of approximate systems and approximate
resolutions are the commutative versions of the corresponding notions in [4] and
[5]-

2. HAUSDORFF DIMENSION

Let X be a o-compact space with a normal sequence U = {U;}. For each s > 0,

for each subset F' of X and for each i € N, we define
Hy ,(F) = inf{z <31u) L FC Ui, Uy € tiy,i < Zk} ;
k=1 k=1
and
HY(F) = lim H,(F).

Then H{[&Jz(F) < (%)tis Hy;(F) for s <t and for all 4, and hence if Hyj(F) < oo,
then HY(F) = 0 for t > s. Thus we can define the Hausdorff dimension dim}, F
of F with respect to U by dim}; F = inf{s : H}}(F) = 0} (= sup{s : Hjj(F) = oo}).
‘We can prove

Theorem 4. Hy is a metric outer measure on X with respect to the metric dy.

Hence Hj; defines a measure on the Borel subsets of X, which we call the s-
dimensional Hausdorff measure with respect to U (or s-dimensional Hausdorff U-
measure) on X.

Our Hausdorff dimension coincides with the usual Hausdorff dimension for Eu-
clidean space with a particular normal sequence.

Theorem 5. Let B = {9B;} be the normal sequence on R™ which consists of the
open coverings ‘B; by open balls with radius 3—11 Then for any subset F' of R™ and

for each i and s, Hg ;(F) = 2° H* (F'), and hence dim% F = dimy F.
3
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We have the following properties:

Theorem 6. Let U= {{;} and V = {U;} be normal sequences on X, and let F' be
any subset of X.

(1) va < U, then H{j(F) < H{(F), and hence dim%, F < dim}; F.

(2) Hyy(F) = 35Hi(F), and hence dimy’ F = dim}, F.

(3) StU( ) < H(F) < 3°HS, y(F), and hence dim3V F = dim}; F.

(4) (Subset theorem) If i, C F, C X, then HU(Fl) < H{(F2) and hence

dlmH F < dlmH Fy.
5) (Sum theorem) dim% (F} U Fy) = max{dim% Fl,dimIU F>} for any subsets
H H H
F17 FQ Of X.

For any spaces X and Y with normal sequences U = {U;} and V = {V;},
respectively, a map f : X — Y is called a (U, V)-Lipschitz map provided there
exists a constant a > 0 such that

dy(f(z), f(2") < ady(z,2’) for z,2" € X,
and a (U, V)-bi-Lipschitz map provided there exist constants oy, as > 0 such that
ardy(z,2’) < dv(f(2), f(2')) < azdy(z,2’) for z,2" € X.

Lipschitz maps and bi-Lipschitz maps are characterized in terms of normal se-
quences as follows:

Theorem 7. ([6, §.5, §.7] and [7, §.3]) Consider the following conditions:

(
(L) dv(f(z), f(a') < 3% dy(z,a’) for z,2’ € X,
(L)% dy(e, ) < 3¢ dy(f(z), F() for .a" € X,
(Nt XU < fH(E"V),
(N)™n: f7H(EmV) < .
Then for m,n >0,
(1) (N)m,n = (L)nfm; (L)m = (N)m+4,0f (L)fm = (N)4,m7 and
(2) if f is surjective, then (L)™ = (N)"+40. (L)=™ = (N)*m, (N)™" =
(L)m—’n,'

We have the Lipschitz invariance:

Theorem 8. Let f: X — Y be a map between o-compact spaces X and Y with
normal sequences U = {4;} and V = {V;}, respectively, and let F' be a subset of X.
For m > 0, consider the properties:
(H)p,: HY(f(F)) < 3™ Hy(F) for s >0, and
(H)™: Hy(F) < 3™ Hy(f(F)) for s > 0.
Then for m > 0,
(1) (L) = (H)mysa = dimy; f(F) < dim}, F.
(2) (L) = (H)™t* = dimy; f(F) > dim}, F.

Corollary 9. If f : X — Y is a (U,V)-bi-Lipschitz map. Then for any subset F
of X, Then dim}; f(F) = dim}, F.
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3. AN INVERSE SYSTEM APPROACH

Ifp=(p;): X - X = (X;,4;,pii+1) is an approximate resolution of a compact
space X, for each s > 0 and ¢ € N, we define H;(p) as

n S n
. 1 . .
lnf{E :<3Zk> ij(X)g Upikj(Uik)7Uik euikszZkSJanEN}
k=1

k=1
and define the s-dimensional Hausdorff measure of p as H*(p) = lim H;(p). Sim-

ilarly to dimg, we can define the Hausdorff dimension of p as dimpy (p) = sup{s :
H*(p) = oo}

Lemma 10. Let p = (p;) : X — X = (X;,,piiy1) be a normal approzimate
resolution, and let U= {p; *(4;)}. Then for each s > 0, H*(p) = H(X).

For each approximate sequence X = (X;,8;,p;+1) and for each ¢, we define
H](X) as

. /1 .
mf{Z(%) ]7Upzu ), Uiy Gﬂlk,z<1k<J7n€N}

k=1
and define the s-dimensional Hausdorﬁ measure of X as H*(X) = lim H](X).
Similarly to dimg(p), we can define the Hausdorff dimension dimyg X of X as

dimpy X = sup{s : H*(X) = oo}. Note here that the definition of H;(X) does not
depend on the projection maps p;.

Lemma 11. Let p = (p;) : X — X = (X;,8,piiy1) be a normal approzimate
resolution such that

(1) stil; < p;jlili fori < j,
and let F' be a compact subset of X. For each i, let F; be a compact polyhedron
such that
st(pi (F),4:) C F; C st(ps (F), st 44).
Then
(1) F = (F;, | Fi,piiv1|Fiv1) is an approximate sequence, and p|F = (p;|F) :
F — F = (F;, | F;, piiv1|Fiv1) is a normal approzimate resolution; and
(2) if U= {p; ()}, then H(F) = H*(F) for each s > 0.
Remark. Given any normal approximate resolution p : X — X of X, we can always

find a normal approximate resolution p’ : X — X’ of X so that X’ is a subsystem
of X and has property (1).

By Lemmas 11 and 10, we have characterizations of dimg in terms of an ap-
proximate sequence and in terms of an approximate resolution.

Theorem 12. Under the same setting as in Lemma 11, dimy F = dim%F =
dimpy (p|F).

Remark. All the results in this section hold for the noncommutative versions of
approximate sequences and approximate resolutions (limits) in the sense of [4, 5].

It is well-known that if X is a compact metrizable space with covering dimension
n, then X can be embedded in I*"*! [3, Theorem V 2|. Motivated by this result,



72 T. MIYATA, AND T. WATANABE

we consider the following question: For each r > 0, find the least integer N for
which a Cantor set with Hausdorff dimension r can be realized in the cube [0, 1]V.

For each N € N and for each i € N, let Iﬁv = IV with the usual metric d, let 4;
be the open covering by open ?ﬂ%—balls, and let ¢; ;41 : IﬁYH — Iiv be the identity
map. Then it is easy to see that v = (Iiv,ili, ¢ii+1) is an approximate sequence.
For each i > 1, let ¢; : IV — IzN be the identity map. Then the approximate map
qg = (q): IV — IV is a normal approximate resolution of IV, and the metric dq
induced by g is isometric to the metric d on I".

Theorem 13. For each positive real number r, let
N {log3

1 1].
1OgQ(r—l— )—&-}

Then there exist a Cantor set X in IV and compact subsets X; of IN so that the
restriction p = (¢;|X) : X — X = (X;,4|X;, ¢;.i+1|Xi+1) s a normal approzimate
resolution of X, and dimgy(p) = r. Here, for each r > 0, let [r] denote the least
integer that is greater than or equal to r.
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ON STRONGLY 0-SHORT BOOLEAN ALGEBRAS

MAKOTO TAKAHASHI

ABSTRACT. We investigate strongly o-shortness of some Boolean algebras. Es-
pecially, we show that every (k,w)-caliber Boolean algebra of density > k is
not strongly o-short.

1. INTRODUCTION

In [5], we introduced o-shortness and strongly o-shortness of Boolean algebras.
We say that a subset D of a Boolean algebra B is o-short if every strictly descending
sequence of length w in D does not have a nonzero lower bound in B, A-closed if
dy Ndy € D for every dy,ds € D such that d; A dy > 0. B is said to be o-short
if it has a o-short dense subset and strongly o-short if it has a o-short A-closed
dense subset. We note that B itself is not a o-short set if B is atomless. In this
paper, we assume that Boolean algebras are atomless. Typical examples of o-short
Boolean algebras are regularly filtered Boolean algebras which are also strongly
o-short. Another examples of o-short Boolean algebras are measure algebras. In
[5], we left the following problems:

(1) Are measure algebras strongly o-short?
(2) Is Prikry forcing o-short?

After the author lectured in the 2002 General Topology Symposium, Jorg Bren-

dle showed the following theorem which concerns to the first problem.

Theorem A (Brendle). Let B, be the algebra for adding k many random reals.
(1) B, is not strongly o-short.
(2) Assume that the density of By, equals to k. Then B, is strongly o—short.

Yasuo Yoshinobu and the author extend the first result more general as follows.

Theorem 1. Suppose that B satisfies (k,w)-caliber and d(B) > « where d(B)
denotes the density of B. Then B is not strongly o-short.

Let s be a measurable cardinal, and U a normal measure on . Let Py denote
the canonical poset of the Prikry forcing associated with U and By be the Boolean
completion of Pyy. Since By satisfies (k,w)—caliber and d(By) > k, By is not
strongly o-short by virtue of the thorem above. Y. Yoshinobu also show that
Prikry forcing itself is not o-short. However, it is still open whether Prikry algebra
By is not o-short.

I would like to thank Joérg Brendle and Yasuo Yoshinobu for many valuable
comments. In this paper we give proofs of results above with their permission.

1991 Mathematics Subject Classification. 03G05, 06E05.
Key words and phrases. Boolean algebras; o-short; strongly o-short.

73



74 MAKOTO TAKAHASHI

2. PRELIMINARIES

In this section we give basic definitions, notation and results which are needed in
this paper. The reader is assumed to be familiar with the basic facts about Boolean
algebras found in [3]. For basic facts about set theory, we refer to [2] and [4].

We use the letter x for infinite cardinals; the letters «, 3 for ordinals; the letters
A, B for infinite atomless Boolean algebras. For a Boolean algebra B, we denote
by BT the set of all nonzero elements of B. We use A, V, — for Boolean operations.
A < B means that A is a subalgebra of B. If X C A, then (X)4 is the subalgebra
of A generated by X. We omit the subscript if there is no confusion. We say that
a set D C BT is dense if for every b € BT there exists d € D such that d < b.
For a poset P, we denote by B(P) the Boolean completion of P. For a set X, we
denote by | X| the cardinality of X. For a Boolean algebra B, we define the density
d(A) of B by d(A) = min{|X| | XisdenseinB}. For a set X and a cardinal &,
let [X]" ={Y C X | |[Y]| = k}. C C [X]" is said to be A-closed if it is closed
with respect to union of increasing sequences of length < k. C C [X]" is said to
be unbounded if it is cofinal in ([X]*, C). We say that a Boolean algebra B has
(k,w)-caliber if for any uncountable subset T C B of size k, there is countable
F C T such that F' has a non-zero lower bound in B. It is well-known that the
random algebra has (w1, w)-caliber.

A is called a regular subalgebra of B, in symbol A <,.., B, whenever for every
M C A, /\AM = 0 implies /\BM = 0. B is said to be regularly filtered if
{A <,y B | |A| < Ng} contains an Ry-closed unbounded subset of [B]*. Basic
facts about regularly filtered Boolean algebras can be found in [1]

3. EXAMPLES
In this section, we shall give some examples of o-short Boolean algebras.

Example 1. For any set X, let Fr X be the free Boolean algebra over X. We
assume without loss of generality that X C Fr X. Put

D:{ixl-ix2~...-ixn‘nEw,xl,xg,---,xneX}—{O}.

Clearly, D is a o-short A-closed dense subset of Fr X. Hence, Fr X is strongly
o-short.

Example 2. Let (B, i) be a measure algebra. Put

for some n € w}.

1
D:{a€B|u(a):n+1

Then D is a o-short dense subset of B. Hence (B, ) is o-short. (B, u) is not
regularly filtered. In fact, measure algebras are weakly o-distributive but free
Boolean algebras are not weakly o-distributive, and a regular subalgebra of a weakly
o-distributive Boolean algebra is again weakly o-distributive. Thus (B, ) does not
have any countable atomless regular subalgebra.

Example 3. Let (P, <) be a notion of forcing with finite conditions such that p > ¢
if and only if p C ¢ for every p,q € P. P itself is o-short and is a o-short dense
subset of B(P). Moreover, if any two compatible elements of P have an infimum
in P, then P is A-closed in B(P), so that B(P) is strongly o-short.

Every regularly filtered Boolean algebra is strongly o-short(see [5]). The follow-
ing example, however, shows that the converse is not true even if it is ccc.
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Example 4. Let S C w; be a stationary co-stationary set and (T, <t) be the tree
of closed subset of S under end extension. Let Pt be the set of all finite antichains
of T ordered by reversed inclusion. Then P is a o-short A-closed dense subset
of B(Pt) by Example 3, so that B(PT) is strongly o-short. P is ccc but not
absolutely ccc(see [6]). Since every regularly filtered Boolean algebra is absolutely
cce, B(P) is not regularly filtered.

4. STRONGLY 0-SHORT BOOLEAN ALGEBRAS
In this section, we prove main results.

Theorem 1. Suppose that B satisfies (k,w)-caliber and d(B) > k. Then B is not
strongly o-short.

Proof. Suppose that B is strongly o-short. Let D be a dense, o-short and A—closed
subset of B. There is Dy C D dense, |Dy| = d(B), which is still o-short and
A-closed. Enumerate Dy = {d,; o < d(B)}. We recursively construct sets D
(v < d(B))and X such that

(1) DQCDﬁfora<ﬂ

(2) [DT] < laf -w < d(B)

(3) D§ C Dy is A—closed

(4) for a < g, if d € D¢ andeEDﬁ\D then e 2 d.

(5) Ya < d(B)3z € DYz < da]
(6) Va < d(B), a € X if and only if there is no d € DY such that d, > d
Let DY = 0 and Xy = 0. For a limit ordinal X, let D} = |J,., Df and X, =
Ua<cr Xa- Let @ = B4 1 be a successor ordinal. If there is d € DY such that
dg > d, let DY = DY and X, = Xj. If there is no d € DY such that dg > d, let
D§ be the A-closure of DY U{ds} and X, = X5U{8}. Put X = Ua<a(s) Xa and
D, = Ua<d(B) D¢. Since Dy C Dy, Dy is o-short. It is easy to see that D; is dense
and A-—closed.

Since d(B) > k and X is cofinal in d(B), |X| > x. Since B satisfies (k,w)-
caliber, there exists countable subset F' of X such that {d.|a € F'} has a non-zero
lower bound b in B. Without loss of generality, we assume F' = {a,|n € w} and
o <ag << ap<---.Since ay, € X, do,, # day Nday N ... Nd,,_,. Hence the
sequence of e, = do, Ada, N ... Ndq, € Dj is strictly decreasing. Since d,, > b for
every n € w, {ey|n € w} has a non-zero lower bound B. So D; is not o-short. This
contradicts that Dy is o-short. O

Let B, be the algebra for adding x« many random reals. Since B, satisfies
(w1, w)-caliber and d(B,,) > wy, we have the following:

Corollary 1 (Brendle). B, is not strongly o-short.
On the other hand, J. Brendle also showed that
Theorem 2 (Brendle). Assume that d(Bx) = k. Then By is strongly o—short.

Proof. Let D C B, be dense, |D| = k. Say D = {b,; a < k}. For each o choose
Yo ¢ supp(by) in such a way that the 7, are distinct for distinct . Let a, =
bo A [{{{Ya,0),0)}]. Here {{(74,0),0)} denotes the partial function p : K X w — 2
with domain the singleton {(7,,0)} and p({7y,,0)) = 0. [p] is the open set defined
by p. Let D’ be the A—closure of the collection of the a,. Assume {d,; n € w} C D’
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is strictly decreasing. Each d,, is a finite conjunction of a,, say d, = A\, K, Qo - 1
{aq,,; © < kn,n € w} is infinite, A\, d,, = 0 is immediate. If {aq, ,; i < kn,n € w}
is finite, then the sequence cannot be strictly decreasing, a contradiction. So D’ is

o—short.
O

Let x be a measurable cardinal, and U a normal measure on x. Let Py denote
the canonical poset of the Prikry forcing associated with U, that is, Py consists of
all pairs (s, A) satisfying

(1) s is a finite strictly increasing sequence of ordinals below &,
(2) A €U and maxs < min A (consider max () = —1),
and (s, A) < (t,B) iff
(1) s is an end extension of ¢,
(2) s\tC B,and A C B.

Let B be the Boolean completion of Py. Since B satisfies (k,w)—caliber and
d(B) > k, B is not strongly o-short. It is open whether B is o-short. However, Y.
Yoshinobu showed that Py itself is not o-short.

Claim 1. Whenever D is a dense subset of Py, there exists s such that
VX eU3Y eUlY C X A(s,Y) € DJ.
Proof. Suppose not. Then for every s there is X € U such that
VY eUlY C X; — (s,Y) ¢ D].

For each —1 < a < &, set

Xo= (] X,
and

X = A—1§a<mXa~
Note that X € U and thus (§, X) € Py. Therefore there is (s,Y) € D such that

(5,Y) < (0,X). But then for every a € Y, a € Xjaxs € X, and thus Y C X,
holds. Contradiction. O

Theorem 3. Prikry forcing is not o-short.

Proof. Pick s as in the above claim, and pick Xy € U such that (s,Xy) € D.
Whenever X,, is given, pick X,,41 € U such that X,4; C X, \ {min X,,} and
(s, Xn+1) € D. Then (s,X,,)’s form a strictly decreasing w-sequence in D which
has a common extension. This shows that D is not o-short. (I
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SMOOTHNESS OF SCALING FUNCTIONS AND TRANSFER
OPERATORS

TATSUHIKO YAGASAKI

Z OFFtIE, rank M ERZ A7 —VBIE & ZHUCHEET S v —7 L v MBS
DIF 5 HE % Transfer operator D spectral radius Z W CHEiT 2% & v 9 KA -
il - KEK L OILFEWZE [6) OMNZHNE L DTH 5.

1. 7x2—=7VL v MEFTIZOWT
1.1. Fourier &1 h5S Wavelet BT .
Fourier fRHT 7> 5 Wavelet @bt ~DEATIZ, BUAWICIEZ XROBRICHEEIN DS
[5]. (B38) B9%Z=] L2([0,27]) %, EAZHEEE ene (n € Z) 2Fib, EEOBISK
f € L*([0,27]) 1¥ Fourier #EEHH

f(.’L‘) — Z cneinac

nez
% 5. Fourier 1R%L ¢, 1Z

1 2m .
Cn = —/ fl@)e ™ dx.
2 0

ThHZ6N%, 7, Fourier £#t F: L%([0,27]) — L%([0,27]) 2IRATERS
ns:

- [ T fe)e i d.

B {e*} ORI, 1 DDEEARBIE e @ dilation I k> TR I N T3 Z
EThDH, UKL, FERWARBEEERTH D L2(R) b T DK ) IR (x)
RO EI D BHARMEE LTAHEL S, RIid FEay 7 ) #B%EE b2
5, AR A AN E LT, dilation IZHNZ T translation = + k & &I
ANDZDIARKR I ETH S, dilation % FEELSF ne TIlE7 < 2 DFEHEERS 272 12
&%, [MEIZ RofRichRs1 5 ¢
RIRE 1.1. PI% @ (2) € L2(R) T, ¥jp(x) = 29/29(2x — k) (j,k € Z) 2% L>(R) D
ERIERIEE L %22 b DOWPEET 2002

COFEM 2T THEABR (z) 2 2 EER 72—7 Ly b LS, () 32
YR PREROIEDEE LV, RO, RTEFI NS Harr BI%L T
b5

1 (0<2<1/2)
Yu(z) =< -1 (1/2<z<1)
0 (Z0fth).
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P(x) B2 ERL V=7 y b OLE, BB fe L2(R) Icx L, J&H

= Z ik W5k

7,kEZ

ZfOz—7Ly MERETS Tx—7VLy M, 13, XATHEZONS

gk—/ F(@)da(@) ;—%/ fa ( )w
2k; % HHTEAR (b,a) CTEEMMAT 7x—7 Ly M W, : L2(R) — L*(R)
b’Aﬁ“(ﬁfﬁé‘ﬂ%

Wo(oa) =lal [ s (x‘b)

1.2. L ERRERIT.
% j€ZITRNLT LA(R) OEEZ2EH W, %

Wj = ClLQ(R)<1/}j,k ke Z>
TEDS E, RPBWH LD :
L2(R) = @jeZWj (Eﬁlﬁﬂ])
IHIC V=@ W, EEL &, {V;} BROFM 27T
L VicVin (j€Z)
(2) elram) (UjezVs) = L*(R)
(3) NjezV; = {0}

(4) f(z) €Vj <= f(2z) € Vi1 (j €Z)

C D&MW 7 ST R2E 08 {V;} 2 —fRIC [E2E MRA (% B AT
EMES

W, Tk EZMRA{V,} 28I, 7x—7 VL v b ¢(z) ZHRT 5 L v
FBAICIIO b, ROZI 2T o(x) € LA(R) OFELEHT 2 2 LIZAA
Th5:

(%) @(x—k) (k € Z) \& Vo DIEBIERILIE,

Sz 7S BIE o(z) 2 MRA {V;} 24K % 238 [HE R 7 — VB &0
B opik(x) = 212p(22 — k) (j,k € Z) LiEL L, (4) &1 wir(x) (keZ) XV
@E%ﬁlﬁi%ﬂf} LC&Z) ifl, ©1,k (]{1 S Z) =8 Vi D Eﬁ%rf (S VoCWh ‘/C
HHr06, D {an} € ? BHEELT

:Zakw@x—k)
kEZ

—RlcRINE, ZoBRFRXE 2- 27— VBIR LIES,

23 ER v x—7 Ly FOEMRNGEKTIE, A=V L vx—7 Ly b
PHLE LT BRSNS, 65T, LoBAME R 2) [H5 MRA {V;}, A7 —
B o(z), 72—7 Ly b o(z) &, 1200 LTHRASNDIBDTHS, X5,
2SI, D M > 212 LT MESM ICHRICIRIRE LS,

ML EDEZEICHS T, — D M > 2 1ICH LT M 35 MRA OPsHADHT,
M TERR A7 — VB () MO M TERR 7 =—7 Ly bR l(x), -, oM 1(2)
DS, ROBRICEREINS
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EE 1.1, XOEMZ7T L2 (R) OS2 OH {V;} 2 M E3Z MRA &

35

) ViCVinm (J€Z)

2) CZLQ(]R) (UjeZ‘/}') = L2(R)

3) JeZVj = {O}

4) f(x) € Vi <= f(Mz) € Viy1 (j €Z)

5) & BB o(z) € Vo ﬁ“ﬁftf oz —k) (k€ Z) 13 Vo DIEBIEAIILIE,

6) EERR V, = %@( I%)&U%ﬁw()EW?@:L~wM>U
DEELT, Ki=1, WXL T (e — k) (k€ Z) 1& Wi DIER
[E2ERLJEE,

BB o(z) X ol (), -+ oM~ Yz) 2% %, 2D MRA B3 (M EXR) A
VBB RO 2 —T Ly bR OEIRS,

COERICET S ELEE &) & Rlesz HIE &) Fefbic—its s 2
LDTED, Fh, V=7 Ly FEBR W, T, HIEUT S5 ICHVEED
T HEARBEB Y BRI LENTES,

ZOXHICERINS a8y PR () ME R R — VBB v 2 —
7Ly bR O5ERRE (BARRNZRREREE) 23, 1. Daubechies [1], P. N. Heller [3],
dif B Stk > TEZ6NTW0»3

1.3. 9xz—7Lv bOIEAIE.

RIZHEIZ 2 2003, BRI N B 72— T7 Ly b OWH TH%, 2012
LCIEAME o) OiHii 2 ki 6ns, 72—7L v bR i) 1d o(Mx—k)
DXL LTRSNDDT, ZOMBICBIL TIE, A7 —VBBDIEHITEZ %
Ky +oThs, PN HellerfR O. Wells, Jr. [4] £13, Sobolev 5% so I
& % Holder 7% DFHli 2 H >, - 3 DGAIT, RN LR 7 — VB
@?ﬁ%ﬁ‘é‘@a&fﬁﬂﬁuﬂﬂﬂ%’—ix‘(b)%. WX, sy B % FO TR O R O 5
ZYR L7 [6). KREILMEIE, ZOFEOMHTH S, EX 7 x—7 Ly b OIEH
PElZ, ADIR 5 vanishing moments 5&fF % RIF 77217 Tl, ZRWICLEESINT,
FREM L o DS 2 KT 2 568D H 5.

1.4. FifE-RIREART.

DRk, BEAWNREED 6 DELETH -7, T¥E~DISHTIX, Fourier f#HT -
7 = —7 Ly MENT I RRE-RBBURNT EIRI s, ATIESORRINE, R

ZEBETH R EOBE f(t) &£ LTEIND, RE-EEBWTTIEX, ANES
f(t) OHIT EDQRIBEILIIDY ENFZTEEFN LD 2 KRADOR D T Y iR
THHL &9 &7 5, ®ABERDIE FORRECHRETE 228, | - (REERET D
BHNCIE, ZDWRICIGU 7R S DOIFEESHE & 72 %, Fourier #BUER 13 —&
REiE T B ~DODE<Th D, F7, Fourier x}ﬁ@ ¥ (—o00,00) L TORT
H5, E>T, HRADOM Y CORPEESNT OO0, f(t) Z2RAMLT 22 &
WL D,

av Ry EEREOY =T Ly b yt) BV Tx—T Ly MEHRTIE, v
=7 Ly FIZXY 5 dilation 2248 13 PR KO Z U6 U 72 IR EIE 2246,
translation 22413, LA LRI n, JnUckiBons ELHEE ¢,
(J,k€Z) > 7 x=—7 Ly b W, 13 WH-EEBMT IEL b0 e ks, ¢
TIZ, THOFESIICE VT, 72— 7Ly MENTIE, - BEET o 18eF
BltihoTns,
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2. RANK M A4 — VB (2B 2 HAHIE

AREITIE rank M A7 — )VBIBUCE T 3 HAHIEAZFH L, KFIicEgd s
HEEARICERET S, T, A=, 7=—7L vy FBIE FIE, TRCH
BB oOEiPCc& 2 %, 7, Fourier 3 (fF5 %242 T) XA TEHKT S :

:/00 f(2)e® da.
EE 2.1. B p(z) € L2(R) SRDOFEMZ 72§ L &, rank M A7 — VB TH
209
() Y ap = M %W TIEEG {arbner DEAEL T KAIKD 32
k
= Z app(Mx — k)
keZ

CoBRRE 27 —VBIRR, £7, B {ap}r 2 AT MRS R —)L
BIRIZ, o(z) D = 17— (i € Z) TOMEDS z = 1= (i € Z) TOEMNEE S Z

ERERLTED, A7 =Wl {ap}r DRENL, BIE p(x) ZEHERICRD S (7
7 7 ZBAEANCHC) JZLREB LR D,

o(x) DR E VI B2 S1E, p(z) HE XD b Fourier 281 o(¢) 2> 72 /iH3
R, OB, A7 —nWINcitd 2 b DL LT, Fourier f%

_ 1 ike
= — are
M;k

DEEICARZ, IhE o) DY RLERSE, ZhzHveiud, 27— LVBRiE
KA L FMEICZ S ¢

P(&) = A(E/M)p(&/M).
p(x) B3 87 PRERO L FITE, 512 KAPHY 7

= (0 H (&/M7).

A — VBIEICBIR T 2 & L LT, mAXE N, RS L, MU, B BH 5 ¢
(1) 2 =ZALENK Q) T, VRV AE) BRORICETLIND LE,

A7 — VBB o(z) 13 RECN 2RO En) ¢

i€y M-\ N
G e e 0}

o(z) DI REN ZFOD, N+1I3FEBVEE, o) 13 RRARE N 2§
DLV, BRI N ICBT B QE) %, o(x) DEERIT v F)L EIES,
(i) p(z) DRI L ZXATED S :

L=k —ko+1 (ki =max{ke€Z]|ar#0}, ko=min{k € Z|ay #0}).
ple) BV AT FEEHOCD L, BSHR (I <o) AIE .
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(iii) (z) DERTH 2 &1&, BIBI {p(x — k) hez 7% L2(R) THRRZRT
LThD, ZOEE, VYR AL K, RO HEREE s T

M-1

> A+ 2kn /M) =

k=1

W, Y URIL A S IEREN T EE, RIARDORT — VB
o(x ) WEIRTH 57D DY 5MEE, Q(E) 2% Cohen Feff 217§ C
ETHAH. HL, Q&) 2% Cohen &t 27z T L%, £=0DEFZET R
DAYy NRIES F BFELTXBKDIZOIETH S ¢

(i) R LoOfERED 2 B JELATBIE £(&) 1o L TRDEXDILD 37

O
dé = d
/[—”ﬂ 1) de /F 1) de
(i) Q) £0 (€U, MIF).

BIZIE, Q&) #0 (€€ 0,7/M]) 5 51E, Q&) & Cohen FfF %3z ¥

EE 2.2. AR N, ES L O rank M () A7 — VT 202 v FL A(6)
D3 RS 2l TS DRED Y 7 A% 5 pu v TR, L>MN KDL
2. R, L=MN OHf, RERNTHIEVL, TOLED pyNL % ouN
TR,
omnL DR (FURNZARRE) 25 8] Itk TEZ6NTWwS
EE 2.1. (1) fEED p(z) € punz CRLT, RE) =|Q)* 1, FEaFEHET,
RDOW%x LTS5
(i) L=MN (EZ&/D) OBA R(¢) = Rn(€)
N-1

HL Ry(§) =D en(l—cos&)™  (cn & M, N, n ICOBEKIFL TEE >
T35 B HER), )

(i) L=MN + Lo+ 1 (Lo > 0) D¥é - R(§) = BRy(§) + R(§)
HL R(£) = (1 —cos&)N Z Cp cosné (Lo € MZ, ¢, €R).

1<n<Lg
ngMTZ

(2) Wiz, (1) D% LEALEOIEAEESE R(E) 35 4 51U, XROFIAT £
SHMRD rank M A7 —VBIEL p(z) T & v RADERGA 27 S D DKL
ns:

(i) Riesz lemma X0 3MAZLEHA Q(¢) T |QE))? = R(E) &7 T b DHEL
ns,

(ii) A(€) = (M)Nc}(@ Tk b A®) BEESH,
P(&) = ¢(0) [T AE/MI) 12k @(¢) BEE B, ZNb5, o(x) BEHES
ns.
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1 TR LI, rank M BER 7 =—7 L v b+ OIEHIMEOIEIX, ~HE
T LERAT — )VEAEOIEREOF I RE T 5. DM Tk, ROMEL2ELZT S !

FIRE 2.1. (1) oa v DIEHIE DG
(2) BE L 25N MN o4 LMIEL, BEIS v AL Q(€) 1T 2 7 iE T2
ZRICEDEE, oynn DIEHER @y v OIEHITED S ENZTTRES N DD ?

I (2) I2BWT, pune WKWET 227 — VBT, 2O v AL Q(€) 3
BUE INTALEICHER 2R OO OPFEL RV L H D, BEINERFEBE
NBHEI DU, parng OHERE GEBL 2.1) 135V TIINC D 71 UE S &
B, Q) 1F cosé DHEHATH 5006, LA r(x) T r(cosé) = |Q(E)? il
2T LN —RISEE S, EH 2.1 (1) 1D ZHKX r(2) Ot 5, FEBIAMEE
7% Q&) DHERDIEICEHL TRDI L35 ¢

(i) N>1,& € (3,m) LT ¢ € pananvta T r(coséy) =r'(cosé&y) =0
27T HDOVEFET S,

(i) M >3, N>1IZH LTy €punmuniz CTricosm)=0 Zii7zT bDHE
1E3 %,

(iii) M > 3, N > 1, & € [5,7] (M =3, & =2 2FR<) WHLT ¢ €

oM .NMN+3 C r(coséy) =1"(cos&y) =0 Ziii72§ b DBFET 5.

3. s, T# & TRANSFER OPERATORS

KEITIE, pypn g DIERIE 25§ 2R ICHEE L 5 s, FEE KO transfer
operator @ spectral radius 12 2W T DIEARFIEZHIHT 3,

3.1. BSOS DIEIE — Holder EH, s, IBH.

BA% f(z) Do I DI L LT Holder 8% a(f) ZHWB I LB TE 3,
n € Zso ISR LT, C (& n PEEHEH TRERBI D 7 7 A% KT, 615, a=n+o
(0 €(0,1) ITNLT, 77AC*ZRTEHETS :

sup | (@) = f(y)] e b
rHy |x_y|a

C‘“::{feC"

BIL f(z) @ Holder $ a(f) 1, XATERI NS :
alf) :=sup{a>0] f € C*}.

Sobolev H&IAAFEEL 23R 25 X 912, Holder F§0E Sobolev R TEEAMN
N5, B f € L2(R) ITA LT, ZdD Sobolev 8% s(f) 1 XATEREI NS :

o(f) = sup{sem \/ |<1+5|>8f(5>|2d5<oo}.
D p> 0K LTD, [0 s, 5 s, (f) RATHRT 2 LHTES :
5(f) = sup{seR \/ I(1+I£)Sf(£)l”d£<oo}-

tRE 3.1. f € L*(R) 232> 87 FAEZEOR, ROAEFERIMILT % (6, Proposition
4.1]) :

sp(f) = B+ < s1(f) < alf) < s0(f) (p>1,r>2)
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A R LT 272010, pan KIBT BEEO A — VBIBUCBI L TR T 2
Bz, sp(omn,L)s punz € C ROFTE M 2

omn,L D sp TEEUZ, WISV FNVITHBET % transfer operator @ spectral radius
ZRAWTIHMET 2 2 E3H2R %, XKHiTlE, transfer operator (ZEH T % HAHIH %
P 5.

3.2. Transfer operators & Spectral radlus

Transfer operator 1& /127 ICABE L 72 8E& T Z 2Tk, 1 XRITXE Lo
TG IS % transfer operator %T&’).

TG k2 [0,71] — [0, 7] ’EQ;'K:T:Q“C“%&)ZJ :

7 21 2+ 1
k(z) = N ;’1?% gi 1S - M2@ i 2
M 7 ™ — :U) i T<z< i .
RIS []\’ﬂ ”le] o [0, 7] DI—KIRE 0, - [0, 7] — [;ﬂ ’*le]
o,
M g, F SR LT, B T,(F), Ug(f) BRATERT 5 :
Ty(f)(x) = A%X; q(0i(z)) f(0i(z)), Ug(f)(@) := gq(z) f(k(2)).

&5l T, U7 (j=1,2,--) 1F, ZNENT,, U, D j MIGHEIEMNE 283, T,7,
U/ ZREFHETREOBIRICD 2. ThbE g, f, g % [0,7] LOGRIHBIEE 2
&E, XA o

| mithade = [ 100 (G=12--)
L>([0,7]) &, [0,7] EOFELHER FATHBIBAR R D BRI BIZZERNIC 2 L L
1] := esssup {|(z)] : = € [0,7])
% 5.2 72 Banach 222 %9, L>([0,7]) 1& XD 22D cone ZEHA TS ¢
K:={feL>(0,n]) : f>0ae}, Ko:={feL>®(0,7]) : essinfjg f > 0}.
g€ KT LT, fEHFE T, : L=([0,7]) — L>([0,7]) Z ¢ \ZfIPBET % transfer

gl
operator &WRS. T, 13 HHRBIEIENFE T positive (Ty(K) € K) TH 2. T, D
spectral radius p(T, ) d RCEFLI NS @

p(T,) = lim T,

p(T,) = lim |T,"(f HIF (f € Ko) DIRDILE, rg € K, r < q (ae) %513
p(Ty) < ( T,) < M| £%%.

C([O7 7]) T EHRIB D 2§ Loo((0, 7)) DEBITZEMZFKT. C([0,7]) &, KD cone
EEGATVS

K :=KnCcC([0,7]), Ko:=Konc(o,x]).
g€ KDL&, T,C([0.7]) C C0,a]) £%%. p(Tyleqon)) = p(Ty) DT,
BO7D Tyleqon) d Ty TET LTS, bLge Ky %513, THD fe K,
f;é() LT H2 k> 1 DBHELTTF(f) e Ky %55,
w13, ART P IZDOWT A@Tﬁﬁlﬁ %2 ¥ (cf. [6, Section 3]) :
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Eﬂ3mqeﬁb@Pwmw@ﬁ&L,feKb&?%.h::%MﬂﬂW:m?”
(n>1) LiEL.
CDLE, XY D
(i) REWiLT g K B —BICHFET S gl =1, X>0DFELT
Tq(g) = Ag.

CDEE, X512, ge Ko, A= p(T,) HIKD O,
(i) gn \& g IT—BRICET 2.
(M)f?gﬂipawﬁl*ﬁw%ﬁ¢5.

n

() min 5L (1), e PN 7).

W 3.2. o, B ZIEERETS. pge Ko Ta<pqg<pioiEXA V7T 5:

\MEJ—MENSA%%M—QN

4. @M,N,L @IEE”‘I%O)%Z{EE
J}LF, (,0(%') € YM,N,L EL, Q(é) %z 4,0(1,‘) @E%%"Jf/:/j‘\}l/}:jﬂ%

4.1. so IEBOFFME. — (2, 4]
T. Eirola [2], P.N. Heller — R. O. Wells, Jr. [4] %%, ¢(¢) = |Q(&)|> % weight B
B & $ % transfer operator Tigiz ZHVT, sa(p) D ROMBFRAL G A7 -

- 1
EIE 4.1. s2(p) =N — B logys p(Tiq)2)-

|QI 1% cos& DEIHAIC Y, FHIFE T2 13 coské TRON S FRUERZ AIRXK
AR 2EM] Z2H82. p(Tig)2) & Tige P 2 DEDZERAN DR %Z %3 positive
matrix O RAEAE (BT 2. 2D LF, Tigp PIEMEEAREEKZRFOHZE
WKL, LOFRAOIHTEETH 5 LFEIFIC, sq(p) DT REIHEDOEAERHR T
KHIKRDEND T EDHEKRT .

s2(p) — 5 < a(p) < sa(yp)

Th206, ZHITLD, o OIEAIED BEMICEHMI S NS 2 L2k s, 155,
M = 2,3 DEHIC, ZOBERIEZT,

a7 €C?, 211 €C?, p39€C!

EVO TR, sa(omn) D b T5OFH, I 51T, N — oo D& E DKL
RIRA O 2 2o nT AFERICHRTW S,

RImNOBE Q] >0 TH B, KBS L 72 Mg MN 264 LIugeiL, |Q| »3
WM AEICFER 2 ]S, max [Q VNS b L)% A7 — VB o(z) € omrn,L
ERRT B 2 & BHOE S, GBS, Q) 28 R & > ME (mod 2m) ORI
FAMRIcES 2R o L, RANEOEAICHARTIEAE?IZF LCHE TS 2 2R LT
W5,
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4.2. s, IEBDFFE. — [6, Section 4]

—fD p > 0 DEE, weight BIELE LT q(&) = |QO)IP LB L, q&) IF2r M
W% 5> Holder Mkt BB E 2 D, KT, o(z) BRIFADNDHZAITIE, ¢) 1F
IEfE C> BI%T [0, 7] BT fiag HFHEINTH 5. BiRR T, Q(¢) ICBI¥ %Y
BGEMREL T, I T, BIEEAREZ RO ) A TH S, Zokd, YT
D EH 4.2 OFHIREZAEXDFIC K> T 5,

ERD fe Ky ICRHLTT,(f) € Ko £, u(f), Nf)>0%

u(f) := essinfio,m Tq(f), A(f) := esssupyg TqJEf)

TERT S ENTED, u(f) < p(T,) < A(f) DD 3L,
EE 4.2, ROANEADRY LD ¢
() () 2 N = logay (T,
(i) Q 4% Cohen M ZMETEE,  s(p) < N— % sup{logy u(f) | f €
Ko} < N.

F 4.1, Q&) 230, 7] WKHFERZFR- RV LEE, spp) =N — % log s p(Ty).

4.3. s, IEBOBIEFTE — RERBEBIC K BiA{El. — [6, Section 5]
s2(p) _% <si(p) <alp) THHH26, 541 8T sa(p) oo TVRS ¢

DIEAIMEDFH %2, s1(p) DBUHEGTRICK D S SICKRTE 2 HBIELRH 2. p(T)
% BUEFH R CEAEIIC R T 2 7201213, BERLIC X 2 BIUERISRNE L %5, p=2
DUEI, T, 75, BRI AHIRRTEALEH RN 2R, o(T,) ORIEAEIE, <
DEfTRENCHR S e T, 2R Tl oBAEORREIFE L. LirLl, —fKkoD
p DEEITIE, 2D &9 & FRERNZ AIRIRICALIRTZEM 13 RY726 e, 22
T, HRICEZ SN TER, q ZBBBIRTEMT 275kTH 5. T4bb, ¢%
PEERBI%L ¢ 2T g~ < g < gt LW ITBIT AT p(T,) % p(T,+) TaHlid %
DI TH 3,

N > 112 L 7T, Sy(0,#]) T, [0,7] # N &L, ZORNXH LESE
% B BB R DS L([0,7]) D N RIGiBa2%EM 289, m > 1 £33,
q € Saem([0,7]), ¢ >0 DEZ, T,(Sum([0,7])) C Sum([0,7]) £ %, ¢ ,q" €
Saeem([0,7]) 2, &% ¢ < q<q" ae ZiT R RAOBEBREKLETS.
f€Sum([0,7]) €95, ff:= T2(f) € Sum([0,7]) (n=1,2,---) EMES. m B
FAREFIUL fFe Ky &) puh, N2 ZROIRICERT L2 ENTES

+ +
pE = ess infjg ”11 . AFi=ess SUP[o, ] ;7? (n=1,2,---).

ROBIRDILD LD 2y < gy < p(Tyx) < A5y < AL

TBIC ¢t € Ko DEFITUE, KOO pE /7 p(Te), AN p(Tx) (n— oo).
Theorem 4.1 £ 1, XY LD :

B 4.1. (1) m BHFIREFVEE, ROLFEXDBED LD :
(i) splp) = N % inf logy, A7

(ii) @ %% Cohen §efh%iii7z7 & &, sp(p) < N — % sup log,, f,, -
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(2) Q&) [0, 7] ICERZF BV EE, RO LD : p(Ty) = sup,, ,, p, =

inf,, . AL

4.4. s TEBOBIESEDIER. — [6, Section 6]

55 4.3 O BEBPIEOEBLOERICHED VT sy IBROBMEREZTo 7. Z DGR
&4l HiofREMAGDYE S 2 ETEPND oy N DIERIEICEET % 3o
T, RIS, BEZELRREZUTICYART S, (r(z) & Q(E)]> = r(cosé) 2z $
ZIHATH-T.)

(1) @262 €C% o €C% 29 €C3 212 €CY o153 €CY
(i) 34 €CY 377 €C?, 375 €C%

(il) pa2.616 €C* if r(cos€) =1'(cos) =0 for &= 4T or 3T;
2920 €CYif r(cosg) =1'(cos§) =0 for &= 3T

21330 €C° if r(cos&) =1"(cos&) =0 for &= 5 or =F;
(iv) @s3311 €CY, w3620 €C? 3920 €C3, 31341 €CH if r(cosm) =0;
(V) 329 €C! if r(cosf) =r'(cos&) =0 for &= ‘%";
=1'(cos§) =0 for &=3F orm;
=7'(cos€) =0 for &=
= rleos§) =0

/

/

)
©3,5,18 € c? if ’I“(COSf)
@387 €C* if r(cos€)

(cos &) for ¢=m;

©3,11,36 € C* if r(cosé cosé

BRARIZ, so(emn) —1/2 & si(pmn) 2 HT 2 BUEEHRORIRZ Y A F§ 5 ¢

M =2 M=3
N | sa(p2,n) —1/2 | 51(p2,n) N | sa(psn) —1/2 | s51(¢3,n)
1 0 0 1 0 0
2 0.5000 0.521 2 0.4087 0.443
3 0.9150 0.980 3 0.6599 0.779
4 1.2756 1.392 4 0.7950 1.031
) 1.5968 1.768 ) 0.8665 1.211
6 1.8884 2.117 6 0.9133 1.331
7 2.1587 2.442 7 0.9499 1.410
8 2.4147 2.747 8 0.9809 1.462
9 2.6617 3.036 9 1.0081 1.499
10 2.9027 3.310 10 1.0323 1.528
11 3.1398 3.572 11 1.0542 1.552
12 3.3740 3.826 12 1.0741 1.573
13 3.6060 4.072 13 1.0925 1.592
77 1.4999 1.999
78 1.5016 2.002

5. ItIC
p B—MEDE;E, transfer operator T, OWE L, F72, toricHEsnLizv
A2\, Sk, NEEREOBEOMNT, T, ® spectral radius OMHE z2 BIMEIC L 721
EEZEZTVES,
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CLOSED IMAGES OF SPACES HAVING g¢g-FUNCTIONS

IWAO YOSHIOKA

1. INTRODUCTION AND DEFINITIONS

In §2, we consider closed images of ks-spaces [34] (ks-spaces are equivalent to
k-semistratifiable spaces in the realm of Th-spaces). Lutzer [22] showed that the
closed image of a paracompact k-semistratifiable space (indeed, the image of a k-
semistratifiable space by a closed, compact-covering map) is k-semistratifiable. We
prove that the closed image of a ks, Fréchet Ti-space or ks, g, regular space is ks
and the finite-to-one closed image of a Nagata space is Nagata. We also prove
that every Ms, g-space is Nagata.

In §3, we define the class of weak contraconvergent (=wcc) spaces which contain
the class of M CP spaces [10] or contraconvergent spaces [31] and are contained in
the class of (-spaces. And we prove that the closed images or the pre-images by
quasi-perfect maps of wece-spaces are wee-spaces. Also, we prove that the class of
wee- and g-spaces are equivalent to the class of wN-spaces. Moreover, we prove that
every fiber of a closed map from a wce-space onto a g-space is countably compact.

In §4, we introduce the concept of strongly a-spaces which contain the class
of paracompact spaces with Gj-diagonals and are contained in the class of a-
spaces. And we prove that every strongly «, wce-space is k-semistratifiable and
every strongly a, wce, wh-space is metrizable.

In §5, it is showed that quasi-perfect images of v- (wy-) spaces are v (wvy) and
open closed images of v- (wy-) spaces are v (wy).

Throughout this paper, all maps are onto and we assume no separation axioms
unless otherwise stated. The set of natural numbers is denoted by N. Finally, we
refer the reader to [6] for undefined terms.

Definition 1.1. For a space X, a structure ({g,(z)} |z € X) is called a g-
structure if g,(z) is an open neighbourhood of = and gn4+1(z) C gn(z) for any
x € X and every n € N. For a subset A of X, we put g,(A4) = U{gn(z) |z € A}.
We now consider the following conditions on a g-structure G = ({gn(z)} |z € X)
of a space X.

(A) If gn(x) N gn(xy) # O(n > 1), then z is a cluster point of {x,, }y.
(B) If gn(z) Ngn(zn) # O(n > 1), then {z,}, has a cluster point.
(C) If z € gp(xn)(n > 1), then {z,}, — = and if H is closed in X, then

nglgn(H) =H.
(D) If y, € gn(zn)(n > 1) and y is a cluster point of {y, }n, then y is a cluster
point of {,}n.
(E) If yn € gnlzn)(
(F) I 2 € g () (n

n > 1) and {yn}n — y, then {zn}n — Y.
> 1), then {z,}, — =.
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(G) If z € gp(xpn)(n > 1), then {z,}, has a cluster point.

(H) {z} = nglgn(z) and, gn(y) C gn(2) if y € gn ().

(I) If yn, € gn(p), Tn € gn(yn)(n > 1), then p is a cluster point of {zy },.

(J) If yp € gn(p), T, € gn(yn)(n > 1), then {z,}, has a cluster point.

(K) If yp, € gn(p), Tn,p € gn(yn)(n > 1), then p is a cluster point of {z,, },,.

(L) If yp, € gn(D), Tn, 0 € gn(yn)(n > 1), then {z,}, has a cluster point.

(M) If x, € gn(z)(n > 1), then {z,}, has a cluster point.

A Ti-space satisfying (A) ((B)) is called a Nagata space [2, 14] (a wN-space
[17]) and G is called a Nagata structure (a wN-structure, respectively). A Tj-space
satisfying (C) is called a stratifiable space [1, 12] and G is called a stratifiable
structure.

It is well known that [11] a space is stratifiable if and only if it is M> [2] and [2]
the closed image of a stratifiable space is stratifiable.

A space satisfying (D) ((E)) is called a contraconvergent space [31] (a ks-space
[34], which was called a strongly-quasi-Nagata space in [18]) and G is called a
contraconvergent structure (a ks-structure, respectively). A space satisfying (F) is
called a semistratifiable space [5] and G is called a semistratifiable structure.

Hodel [16] called a (-space (an a-space) for a space satisfying (G) ((H), re-
spectively) and proved that a Ts-space is semistratifiable if and only if it is a a-
and (-space. It is known that every closed image or finite-to-one open image of a
semistratifiable Th-space is semistratifiable [9: Theorem 2.1].

Moreover, a space satisfying (I) ((J)) is called a v-space [17](a w~y-space [17])
and G is called a ~-structure (a wy-structure, respectively).

A space satisfying (K) ((L)) is called a #-space [17] (a w@-space [17]) and G is
called a @-structure (a wh-structure, respectively). Finally, a space satisfying (M)
is called a g-space [25] and G is called a g-structure.

Every w#-space or wN-space is a g-space.

We define a k-semistratifiable space [22] by a equivalent condition [8: Theorem
3] which is true for no separation axiom.

Definition 1.2. A space X is a k-semistratifiable if X has a g-structure
({gn(z)} |z € X) such that if KNF = (), where K is compact and F' is closed, then
KNgn(F) =0 for some m € N.

Proposition 1.3 [34: Proposition 3]. The following implications hold.
Nagata spaces = stratifiable spaces => contraconvergent spaces
= k-semistratifiable spaces = ks-spaces => semistratifiable spaces.

Every ks-space is a o-space [15] and the closed image of a regular o-space is o
[12: Corollary 4.12], where a space with a o-locally finite network is called a o-space
[30].

The next result follows from [3: Corollary 3.A.1].

Proposition 1.4. FEvery countably compact ks (or ), Te-space is compact
metrizable.
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Gao [8: Theorem 5] showed that every ks, Tp-space is k-semistratifiable. Here,
we give a simpler proof.

Proposition 1.5. FEvery ks, T-space is k-semistratifiable.

Proposition 1.6. Every quasi-perfect map defined on a ks (or ), Te- space is
perfect.

2. CONTRACONVERGENT SPACES

With a view to studying closed images of k-semistratifiable spaces, we first con-
sider the closed images of contraconvergent spaces.

Let f be a map from a space X to a space Y and A be a subset of X. Then by
A*, we denote the subset U{V :openin Y | f~1(V) C A} of Y.

Theorem 2.1. Let f : X — Y be a closed map. If X is a contraconvergent
Ti-space, then Y is contraconvergent.

Under no separation axiom, we have the following result.

Theorem 2.2. Let f : X — Y be a quasi-perfect map. If X is a contraconver-
gent space, then Y is contraconvergent.

The following example shows that all spaces given in Proposition 1.3, y-spaces
and 6-spaces are not necessarily inverse invariant by perfect maps.

Example 2.3. Let X = N x SN (N has the discrete topology ) andp : X — N
be a projection. Then, p is a perfect map and N is completely metrizable. But, it
is easily seen that X is a wN, wy-space which is not first countable (thus X is not
0) and not semistratifiable (thus X is not ).

Mizokami and Shimane [28] showed that every k, Ms-space is M; . But, the
space Y in [26: Example 10.1] is an My, Fréchet space which is not Nagata. The
following theorem shows that every M3, g-space is Nagata. The conditions for
wN-spaces to be Nagata are studied in [19].

Theorem 2.4. For a Ti-space X, the following conditions are equivalent.
(1) X is a Nagata space.

(2) X is an My, g-space.

(3) X is a contraconvergent g-space.

(4) X is a ks, q, regular space.

Theorem 2.5. Fvery ks, Fréchet-space is contraconvergent.
Lutzer [22: Example 4.3] describes that the perfect image of a Nagata space is

not even a g-space. On the other hand, every wN-space is preserved by a finite-to-
one closed map [10: Proposition 18]. Therefore by Theorems 2.1, 2.4, we have the
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following result.
Theorem 2.6. The finite-to-one closed image of a Nagata space is Nagata.

Remark 2.7. That the finite-to-one closed image of a g-space is q can be directly
proved by analogy to the proof of [10: Proposition 18].

By Proposition 1.6 and [22: Proposition 2.5, the quasi-perfect image of a k-
semistratifiable T5-space is k-semistratifiable.

I do not know whether the closed (even perfect) image of a ks, Tj-spaces is ks
or not. In [29: Theorem 3.3], Mohamad asserts that the closed image of a regular
ks-space is ks. But to me, his proof is not clear.

For closed images of ks-spaces, we have the following results by Theorems 2.1,
2.2, 2.4 and 2.5.

Theorem 2.8. (1) Let f : X — Y be a closed map. If X is a ks, Fréchet
T1-space or ks, q, regular space, then Y is contraconvergent.

(2) Let f : X — Y be a quasi-perfect map. If X is a ks, Fréchet space, then Y
18 contraconvergent.

3. WEAK CONTRACONVERGENT SPACES

For convenience, we introduce the following notation: if (A4,)p>1 and (By)n>1
are two sequences of subsets, we write (A,) < (B,,) if A,, C B, for each n € N.

Definition 3.1 [10]. A space X is said to be monotonically countably para-
copmact (=M CP) if there exists an operator U assigning to each decreasing se-
quence (D;),;>1 of closed subsets with empty intersection, a sequence of open subsets
U((Dj)) = (U(n, (Dj)))n>1 such that

(1) D, C U(n,(D,)) foreachnEN7

(2) mn>1U Un. (D)) =

(3) if (Dn) = (En), then U((Dy)) = U((E}))-

Clearly, every M CP space is countably paracompact.

Definition 3.2. A space X is said to be weak contraconvergent(=wcc) if there
exists a g-structure of X such that if y,, € gn(x,)(n > 1) and {y,}, has a cluster
point, then {z,}, has a cluster point.

It is clear that every contraconvergent space is wce.

Theorem 3.3. The following implications hold for a T -space X.
(1) a wN-space=>(2) an MCP space => (3) a wcc-space = (4) a B-space.

Example 3.4. (1) There exists a Moore (hence, semistratifiable [17]) space
which is neither wce nor ks.
(2) There exists a wce-space which is not semistratifiable.
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(3) There exists a wce-space which is not countably paracompact, hence not
MCP.

In [10], Good, Knight and Stares showed the results that a space X is wN if
and only if it is MCP,q and, X is metrizable if and only if it is M C P, Moore or
MCP,~.

Theorem 3.5. X is a wN-space if, and only if, it is a wce, g-space.

As to metrizations of wce-spaces, we have the following results which can weaken
wee-spaces to quasi-Nagata spaces [20; 24; 34].

Corollary 3.6. A Ty-space X is metrizable if it satisfies any one of the following
conditions. (1) X is a wce, developable space.
(2) X is a wee, y-space.

Remark 3.7. [0, wy) with the order topology is a wce, #-space which is not
metrizable [17: Example 4.12].

In [10: Example 15], it is described that there exists an MCP space which is
not preserved by a closed map. On the other hand, weak contraconvergentness is
preserved by a closed map. The following two theorems are proved by analogy to
the proofs of Theorems 2.1 and 2.2.

Theorem 3.8. Let f : X — Y be a closed map. If X is a wee, Ty-space, then
Y is wee.

Thorem 3.9. Let f: X — Y be a quasi-perfect map. If X is a wce-space, then
Y is wee.

The following example asserts that ks-spaces or wcce-spaces are not necessarily
preserved by finite-to-one open, compact-covering maps.

Example 3.10. Michael [27: Example 9.1] gave the finite-to-one open, compact-
covering map from a completely metrizable space X to a metacompact, locally com-
pletely metrizable, non-metrizable Tychonoff space Y which is not Cech-complete.
Then Y is a semistratifiable v, Moore space [9: Theorems 2.1, 4.1; 17: Corollary
4.6]. But if Y is ks or wece, then Y is metrizable by [34: Theorem 3] or Corollary
3.6. This is a contradiction.

Note that every locally metrizable, wee- (or ks-) space is metrizable by [9], [34]
or Corollary 3.6.

Also, from [4: Example 6.6], one can see that ks-spaces or wec-spaces are not
necessarily preserved by two-to-one open maps.

Theorem 3.11. Let f : X — Y be a quasi-perfect map. If Y is a wcc-space,
then X is a wce-space.
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Corollary 3.12. Let f: X — Y be a quasi-perfect map. If X is a v, Ts-space
and Y is a wce-space, then both X and Y are metrizable.

Corollary 3.13 [10]. Letf : X — Y be a quasi-perfect map. If Y is a (3-space,
then X is (3-space.

Note that [32] the closed image of a (3, Ti-space is (3, which is also proved in
Case 1 of Theorem 2.1.

Corollary 3.14. Let f : X — Y be a quasi-perfect map. If Y is a g-space,
then X is a g-space.

Although the perfect pre-imsge of a Nagata space is not necessarily Nagata by
Example 2.3, the following theorem follows from Theorems 3.5, 3.11 and Corollary
3.14.

Theorem 3.15. Let f : X — Y be a quasi-perfect map. If Y is a wN -space,
then X is a wN-space.

The first statement of the following corollary makes slightly better [33: Theorem
12; 32: Theorem 3]

Corollary 3.16. Let f be a closed map from a Ti-space X onto a q-space Y.
Then the following statements hold.

(1) If X is a wee-space, then Y is wN.

(2) If X is a contraconvergent space, then Y is Nagata.

Let f be a closed map from a space X onto a g-space Y. Then, it is well-known
that 0f~!(y) is countably compact if X is normal [26] or countably paracompact
[32]. Although wece-spaces are not necessarily countably paracompact, the similar
result follows.

Theorem 3.17. Let f : X — Y be a closed map. If X is a wce, Ty -space and
Y is a g-space, then Of ~1(y) is countably compact for any y € Y.
Moreover if X is semistratifiable Ty, then Of ~*(y) is compact.

Lutzer [22: Example 4.3] showed that there exists the perfect map from the
Nagata space which is not of countable type to the space which is not ¢. In
Theorem 3.17 we consider the conditions for Y to be a g-space when df~1(y) is
compact. For that, we present the following two properties of a space X.

(a) X is a wce, semistratifiable T3-space of countable type, where X is of count-
able type if every compact subset of X has a countable character.

(b) X is a Nagata space of countable type.

Condition (a) is strictly weaker than () since the space X in the below Example
4.9 satisfies (@) but it is not ks.

Corollary 3.18. Suppose that X satisfies (a) or (b). Then for a closed map
f: X — Y, the following conditions are equivalent.
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(1) Y satisfies (a) or (b), respectively.
(2) Y is a g-space.
(3) 0f ~L(y) is compact for any y €Y.

4. STRONGLY a-STRUCTURES

Definition 4.1. A space X is called strongly « if for any x € X and each n € N,
there exists an open neighbourhood g, (z) of = such that

(a) Np>19n(z) = {2} and,
(0) gn(y) C gn(x) if y € gn().

Here, we can assume that the sequence {g,(z)} is decreasing.

Evidently, every strongly a-space is a Th-space.

Let consider the following properties (P;1) and (P2) of a space.

(P1) There exists a sequence {F,} consisting of closure-preserving closed covers
of a space X such that, if x # y then there exists m € N such that for any
pe X,z ¢ F,ory¢ F, for some F), € F,,, with p € F},.

(P2) There exists a sequence {U,} consisting of point-finite open covers of a
space X such that, if x # y then there exists m € N such that for any
peX,zeVoryeV for someV €U, withp ¢ V.

Definition 4.2. A space X is said to have a strong Gs-diagonal if X has
a sequence {G,} of open covers such that whenever x # y, there exists m € N
satisfying that x ¢ st(p, G,,) or y ¢ st(p,Gy,) for any p € X. The sequence {G,} is
called a strong Gs-diagonal sequence.

Definition 4.3. A space X is called subparacompact(metacompact) if every
open cover of X has a o-discrete closed refinement (a point finite open refinement).

Every semistratifiable space is subparacompact [5; 12] and every subparacompact
space with Gs-diagonal is « [16].

In the realm of paracompact Th-spaces, the existence of a strong Gs-diagonal is
equivalent to it of a Gs-diagonal.

Proposition 4.4. (1) If X satisfies (P1), then X is strongly a.

(2) If X satisfies (Pa), then X is strongly o.

(3) If X is a subparacompact space with a strong Gs-diagonal, then X satisfies
(Py1).

(4) If X is a metacompact space with a strong Gs-diagonal, then X satisfies (Pz).

(5) A submetrizable space X satisfies (P1) and (P2) and hence, every paracom-
pact Ty-space with a Gs-diagonl also satisfies (P1) and (Pz).

Theorem 4.5. Every developable Ts-space X is a strongly a-space with a strong
Gs-diagonal.

Note that every stratifiable space or Sorgenfrey line is strongly «, because it is
a paracompact To-space with a Gs-diagonal.
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Theorm 4.6. Let f : X — Y be a finite-to-one open closed map. If X is a
strongly a-space, then Y is strongly a.

Proposition 4.7. For a strongly a-space X, the following statements hold.
(1) If X is a wee-space, then X is k-semistratifiable.

(2) If X is a wy-space, then X is 7.

(3) If X is a wO-space, then X is 6.

Theorem 4.8. For a space X, the following conditions are equivalent.
(1) X is a metrizable space.
(2) X is a strongly «, wM -space.
(3) X is a strongly a, wce, wh-space.
(4) X is a strongly «, ks, wo-space.

Example 4.9. There exists a compact v, « (hence, semistratifiable), T;-space
X which is neither ks nor strongly . Moreover, X is of countable type.

Let X be a space X = (N, O) with the topology O = {G C N [N\ G| < wp}.
Then X is a compact Tj-space which is not T5. To see that X is «a, let A, =
{k|k > n} for each n € N. For each z € X and each n € N, let g,(z) = {z} U A,,.
Then G = ({gn(z)} | x € X) is an a-structure. Therefore X is semistratifiable [16:
Theorem 5.2]. We show that G is a y-structure. Let y, € ¢5(p), Tn € gn(yn) for
each n € N. Since G is an a-structure, z, € gp(p)(n > 1). If p & {z, | n > m}
for some m € N, then z,, € A,(n > m) and {x,}n>m is infinite. Hence {z,}n
converges to p. Next, if X is ks, then X is Nagata [34: Theorem 2] and if X is
strongly «, then X is Tb, which are contradictions. Last, we prove that X is of
countable type. For any compact subset K of X, let A = {X \ F'| F is any finite
subset of X \ K}. Then A is a countable base of K.

5. 7-SPACES

The irreducible closed images of y-spaces are not necesarily v (even ¢) [26: Ex-
ample 10.1] (or [6: Problem 5.5.12]). However, Gittings [9: Theorem 4.1] showed
that a finite-to-one open image of a y-space (a w~y-space) also is a y-space (a w~y-
space, respectively). In this section, we study open closed images or quasi-perfect
images of «y-spaces or wy-spaces. For that reason, we need the following lemma.

Lemma 5.1. Let G = ({gn(2)} |z € X) be a g-structure of a space X. Then the
following statements hold.

(1) G is a vy-structure if and only if the sequence {yn} has a cluster point x
whenever Yy, € gn(zy)(n > 1) and the sequence {x,} has a cluster point x [21] if
and only if the sequence {y,} — x whenever y,, € gn(z,)(n > 1) and the sequence
{zn} — x [34].

(2) G is a wy-strucyure if and only if the sequence {y,} has a cluster point
whenever y, € gn(xy)(n > 1) and the sequence {x,} has a cluster point.

Theorem 5.2. Let f : X — Y be a quasi-perfect map. Then the following
statements hold.
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(1) If X is a v-space, then Y is .
(2) If X is a wy-space, then Y is wr.

Example 5.3. f-spaces are not necessarily preserved by quasi-perfect maps.

Although Example 2.3 asserts that the perfect pre-image of a v-space is not
necessarily «, the quasi-perfect pre-images of wy-spaces also are w-y.

Theorem 5.4. Let f : X — Y be a quasi-perfect map. If Y is a wy-space,
then X is a wy-space.

Last, we consider the open closed images of y-spaces or wy-spaces.

Theorem 5.5. Let f : X — Y be an open closed map. Then the following
statements hold.

(1) If X is a vy, Ti-space, then Y is .

(2) If X is a wy, T1-space, then Y is wr.
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