Closed images of spaces having g-functions

吉岡 巌 (岡山大・理学部)

Lutzer(1971) は k-semistratifiable space を定義して、

(1) A first countable k-semist. space is stratifiable and hence, Nagata space.

さらに同じ論文で

(2) If $f: X \longrightarrow Y$ is compact-covering closed map, X is k-semistratifiable, so is Y.

を示した。Mohamad(1999) は k-semist. より弱い、ks-space(k-semist. ⇒ ks, and ks, $T_2 \Longrightarrow$ k-semist.) の closed image について次の結果を得た。

(3) If $f:X \longrightarrow Y$ is closed map, X is a regular ks-space, then Y is ks. しかし、彼の証明は私にとって明らかでない。

Question f:X \longrightarrow Y is a closed map or perfect map, X is ks, T_1 -space \Longrightarrow Y also is ks?

Theorem 1. f:X \longrightarrow Y is closed map, X is ks, Frëchet T_1 , then so is Y.

次に、wcc-space(この空間は contraconvergent space [by Sabella(1973)] or MCP space[by Good, Knight and Stares (2001)] より弱い を定義して、その closed images と metrizations をあたえる。

Theorem 2. f:X \longrightarrow Y is closed map, X is wcc, T_1 , then Y is wcc.

Theorem 3. If X is wcc, developable T_2 , or wcc, γ T_2 , then X is metrizable.

(この結果は、Good, Knight, Stares のそれを少し一般化する)

最後に、 γ -space の closed images について考える。

- (1) metric space σ closed image は必ずしも γ -space にならない。
- (2) [Gittings(1975)] f:X—Y is finite-to-one open map, X is γ , then so is Y.

Theorem 4. If $f: X \longrightarrow Y$ is closed open map, X is γT_1 , then so is Y.

Theorem 5. If $f: X \longrightarrow Y$ is quasi-perfect map, X is γ , then so is Y.