Hyperspaces with the Hausdorff Metric

Masayuki Kurihara, Katsuro Sakai, and Masato Yaguchi

Institute of Mathematics, University of Tsukuba

In this talk, we represent the rersult obtained in [2].

Let X = (X, d) be a metric space. The set of all non-empty closed sets in X is denoted by Cld(X). On the subset $Bdd(X) \subset Cld(X)$ consisting of bounded closed sets in X, we can define the *Hausdorff metric* d_H as follows:

$$d_H(A,B) = \max \left\{ \sup_{x \in B} d(x,A), \sup_{x \in A} d(x,B) \right\},\,$$

where $d(x,A) = \inf_{a \in A} d(x,a)$. We denote the metric space $(\operatorname{Bdd}(X), d_H)$ by $\operatorname{Bdd}_H(X)$. On the whole set $\operatorname{Cld}(X)$, we allow $d_H(A,B) = \infty$, but d_H induces the topology of $\operatorname{Cld}(X)$ like a metric does. The space $\operatorname{Cld}(X)$ with this topology is denoted by $\operatorname{Cld}_H(X)$. When X is bounded, $\operatorname{Cld}_H(X) = \operatorname{Bdd}_H(X)$. Even though X is unbounded, $\operatorname{Cld}_H(X)$ is metrizable. Indeed, let \overline{d} be the metric on X defined by $\overline{d}(x,y) = \min\{1,d(x,y)\}$. Then, \overline{d}_H is an admissible metric of $\operatorname{Cld}_H(X)$. It should be noted that each component of $\operatorname{Cld}_H(X)$ is contained in $\operatorname{Bdd}(X)$ or in the complement $\operatorname{Cld}(X) \setminus \operatorname{Bdd}(X)$. Thus, $\operatorname{Bdd}_H(X)$ is a union of components of $\operatorname{Cld}_H(X)$. On each component of $\operatorname{Cld}_H(X)$, d_H is a metric even if it is contained in $\operatorname{Cld}(X) \setminus \operatorname{Bdd}(X)$. Then, we regard every component of $\operatorname{Cld}_H(X)$ as a metric space with d_H .

In case X is compact, it is well-known as Wojdysławski's theorem [4] that $\operatorname{Cld}_H(X)$ (= $\operatorname{Bdd}_H(X)$) is an ANR (an AR), if and only if X is locally connected (connected and locally connected) where an ANR (an AR) means an absolute neighborhood retract (an absolute retract) for metrizable spaces. However, this theorem does not hold if X is non-compact. Here, we construct a metric AR X such that $\operatorname{Cld}_H(X)$ is not an ANR and give a condition on X such that $\operatorname{Cld}_H(X)$ is an ANR (actually, each component of $\operatorname{Cld}_H(X)$ is a uniform AR in the sense of E. Michael [3]). Due to our result, $\operatorname{Cld}_H(X)$ can be an ANR even if X is not locally connected. Our condition on X such that $\operatorname{Cld}_H(X)$ is an ANR weakens the one of E. Costantini and E. Kubiś [1].

References

- [1] C. Costantini and W. Kubiś, Paths in hyperspaces, preprint.
- [2] M. Kurihara, K. Sakai and M. Yaguchi, Hyperspaces with the Hausdorff metric and uniform ANR's, preprint.
- [3] E. Michael, Uniform AR's and ANR's, Compositio Math. 39 (1979), 129-139.
- [4] M. Wojdysławski Rétractes absoulus et hyperespaces des continus, Fund. Math., 32 (1939), 184-192.