On the property "SEP" of partial orderings

Sakaé Fuchino

Dept. of Natural Science and Mathematics
College of Engineering
Chubu University
Kasugai Aichi 487-8501 JAPAN
fucnino@isc.chubu.ac.jp

02.12.15

Abstract

A partial ordering (P, \leq) is said to have the weak Freese-Nation property if there is a mapping $f: P \to [P]^{\leq \aleph_0}$ such that:

(*) For any $p, q \in P$ with $p \leq q$ there is $r \in f(p) \cap f(q)$ such that $p \leq r \leq q$.

A mapping f as above is called a weak Freese-Nation mapping on P.

The weak Freese-Nation property is a weakening of the following property: a partial ordering (P, \leq) is said to have the Freese-Nation property if there is a mapping $f: P \to [P]^{\leq \aleph_0}$ with (*) as above.

This property has its topological counter-part. By a theorem of Lutz Heindorf, a Boolean algebra has the Freese-Nation property if and only if its topological dual is κ -metrizable, a notion defined by Schepin in [7] (see [5]). While κ -metrizability is such a strong notion that a Boolean algebra with this property is quite similar to a projective algebra, the weak Freese-Nation property is much weaker so that, for example, even the powerset algebra $\mathcal{P}(\omega)$ can have this property [3]. In [1], it is shown that a model of set-theory where $\mathcal{P}(\omega)$ has the weak Freese-Nation property behaves very similar to a Cohen model.

Several further weakenings of weak Freese-Nation property have been studied. One of them is so-called "SEP" introduced by Juhász and Kunen [6]. For a Boolean algebra, this property can be formulated as follows:

For Boolean algebras A and B such that $A \leq B$, $A \leq_{sep} B$ if and only if, for every $b \in B$ and every uncountable set $T \subseteq A \upharpoonright b$, there is $a \in A \upharpoonright b$ such that $\{c \in T : c \leq a\}$ is uncountable.

For a cardinal χ let \mathcal{M}_{χ} be the set of elementary submodels M of $\mathcal{H}(\chi)$ such that $|M| = \aleph_1$ and $[M]^{\aleph_0} \cap M$ is cofinal in $[M]^{\aleph_0}$.

A Boolean algebra B has the SEP if $\{M \in \mathcal{M}_{\chi} : B \cap M \leq_{sep} B\}$ is cofinal in $[\mathcal{H}(\chi)]^{\aleph_0}$ (with respect to \subseteq) for all sufficiently large χ .

We show that this notion is actually a weakening of the weak Freese-Nation property. A characterization given to show this naturally generalizes to a property for an arbitrary partial ordering.

In ZFC, we can construct a Boolean algebra which has the SEP but not the weak Freese-Nation property. Likewise, there is a model of set-theory where $\mathcal{P}(\omega)$ has the SEP but not the weak Freese-Nation property. Nevertheless, it can be shown that,

under the SEP of $\mathcal{P}(\omega)$, many consequences of the weak Freese-Nation property of $\mathcal{P}(\omega)$ still hold. In particular, most of common cardinal invariants from the set-theory of the reals under the SEP of $\mathcal{P}(\omega)$ takes the same value as in a Cohen model with the same value of 2^{\aleph_0} .

It is tempting to define the following variant of SEP:

 $\{M \in \mathcal{M}_{\chi} : B \cap M \leq_{sep} B\}$ is stationary in $[\mathcal{H}(\chi)]^{\aleph_0}$ for all sufficiently large χ .

However, we show that this property is equivalent to the original SEP under an appropriate interpretation of "sufficiently large".

The results presented in this talk are obtained in a joint research with Stefan Geschke [2].

References

- [1] Sakaé Fuchino, Stefan Geschke and Lajos Soukup, On the weak Freese-Nation property of $\mathcal{P}(\omega)$, Archive for Mathematical Logic, Vol.40, (2001) 425-435.
- [2] Sakaé Fuchino and Stefan Geschke, Remarks on a paper by Juhaász and Kunen, preprint.
- [3] Sakaé Fuchino, Sabine Koppelberg and Saharon Shelah (Pub.No. 549), Partial orderings with the weak Freese-Nation property, Annals of Pure and Applied Logic 80 (1996), 35–54.
- [4] Stefan Geschke, On σ -filtered Boolean algebras, Ph.D. thesis, FU-Berlin (1999).
- [5] Lutz Heindorf and Leonid B. Shapiro, Nearly Projective Boolean Algebras, Springer Lecture Notes in Mathematics Vol. 1596 (1994).
- [6] Istvan Juhász, Kenneth Kunen, The Power Set of ω , Elementary submodels and weakenings of CH, Fundamenta Mathematicae 170 (2001), 257–265.
- [7] E. V. Schepin, On κ -metrizable spaces, Mathematics of the USSR Izvestija 14(1980), 407-440, Original: Izv. Akad. Nauk Ser. Mat., 43(2)(1979), 442-478.