## TOPOLOGICAL SEQUENCE ENTROPY OF MONOTONE MAPS ON ONE-DIMENSIONAL CONTINUA

筑波大学 数学系 知念直紹 (NAOTSUGU CHINEN)

Let f be a continuous map from a continuum X to itself. T. N. T. Goodman introduced in 1974 the notion of topological sequence entropy as an extension of the concept to topological entropy. Let f be a continuous map from a compact metric space X to itself and  $\mathbf{A}$ ,  $\mathbf{B}$  finite open covers of X. Denote  $\{f^{-m}(A)|A\in\mathbf{A}\}$  by  $f^{-m}(\mathbf{A})$  for each positive integer m,  $\mathbf{A}\vee\mathbf{B}=\{A\cap B|A\in\mathbf{A},B\in\mathbf{B}\}$  and  $N(\mathbf{A})$  denotes the minimal possible cardinality of a subcover chosen from  $\mathbf{A}$ . Let  $S=\{s_i|i=1,2,\ldots\}$  be an increasing unbounded sequence of positive integers. We define  $h_S(f,\mathbf{A})=\limsup_{n\to\infty}\frac{1}{n}\log N(\bigvee_{i=1}^{n-1}f^{-s_i}(\mathbf{A}))$ . And we define the topological sequence entropy of f (respect to the sequence S) as  $h_S(f)=\sup\{h_S(f,\mathbf{A})|\mathbf{A}$  is a finite open cover of  $X\}$ . If  $s_i=i$  for each i, then  $h_S(f)$  is equal to the standard topological entropy h(f) of f. And set  $h_\infty(f)=\sup_S h_S(f)$ . If X is a compact interval (by Franzová and Smítal in 1991) or the circle (by Hric in 2000), it was proved that f is chaotic in the sense of Li-Yoke if and only if  $h_\infty(f)>0$ .

For an open cover  $\mathbf{A}$  of X, we set  $\mathrm{Bd}(\mathbf{A}) = \bigcup \{\mathrm{Bd}(A) | A \in \mathbf{A}\}$ , where  $\mathrm{Bd}(Y)$  denotes the boundary of Y in X. A continuum X is said to be regular if for each  $\varepsilon > 0$ , there exists a finite open cover  $\mathbf{A}$  of X with mesh  $\mathbf{A} < \varepsilon$  such that  $\mathrm{Bd}(\mathbf{A})$  is finite. A locally connected continuum is said to be a dendrite if it contains no simple closed curve. It is known that all dendrites and all graphs are regular. Seidler proved in 1990 that if f is a homeomorphism from a regular continuum X into itself, then h(f) = 0. A continuous map  $f: X \to X$  is said to be monotone if  $f^{-1}(Y)$  is connected for each connected subset Y of f(X). Kolyada and Snoha showed in 1996 that if X is either a compact interval or the circle, then  $h_{\infty}(f) = 0$  for all monotone map  $f: X \to X$ . And Efremova and Markhrova in 2001 considered some class D of dendrites and showed that the topological entropy h(f) of f is equal to zero for all monotone map f from  $X \in D$  to itself.

Denote  $D_{f,n} = \{x \in X | \operatorname{Card}(f^{-n}(x)) \leq 1\}$  and  $D_f = \bigcap_{n=1}^{\infty} D_{f,n}$ . A continuum X is said to be regular for f if for each  $\varepsilon > 0$  there exists a finite open cover A of X with mesh  $A < \varepsilon$  such that  $\operatorname{Bd}(A)$  is finite contained in  $D_f$  for each  $A \in A$ . I will prove the following result which is an extension of the aboves: Let f be a monotone map from X into itself. If X is regular for f, then  $h_{\infty}(f) = 0$ . This shows that if X is either a dendrite or a graph and f is a monotone map from X into itself, then  $h_{\infty}(f) = 0$ .

1

<sup>2000</sup> Mathematics Subject Classification. Primary 37B40, 37E10; Secondary 28D05, 54H20. Key words and phrases. Topological sequence entropy; monotone map; regular continuum; dendrite; graph.