The Baire space ordered by eventual domination: results and problems

Jörg Brendle

December 18, 2002

The Baire space ω^{ω} is the set of all functions from the natural numbers ω to ω , equipped with the product topology of the discrete topology. Given $f,g\in\omega^{\omega}$ say that g eventually dominates f ($f\leq^* g$ in symbols) if $f(n)\leq g(n)$ holds for all but finitely many $n\in\omega$. We shall study several kind of spectra for the preorder $(\omega^{\omega},<^*)$.

For a given preorder (P, \leq) (that is, \leq is reflexive and transitive, but not necessarily antisymmetric), Fuchino and Soukup defined the following four spectra

- (i) the unbounded set spectrum $\mathfrak{S}^{\uparrow}(P)$, the set of all cardinals κ such that there is an unbounded increasing chain of length κ in P;
- (ii) the hereditarily unbounded set spectrum $\mathfrak{S}^h(P)$, the set of all cardinals κ such that there is $A \subseteq P$ of size κ such that all subsets of A of size κ are unbounded in P while all subsets of A of size less than κ are bounded in P:
- (iii) the unbounded set spectrum $\mathfrak{S}(P)$, the set of all cardinals κ such that there is unbounded $A \subseteq P$ of size κ such that all subsets of A of size less than κ are bounded in P;
- (iv) the unbounded family spectrum $\mathfrak{S}^s(P)$, the set of all cardinals κ such that there is a family $\mathcal{F} \subseteq \mathcal{P}(P)$ of size κ with $\bigcup \mathcal{F}$ being unbounded while for all $\mathcal{G} \subseteq \mathcal{F}$ of size less than κ , $\bigcup \mathcal{G}$ is bounded.

Clearly $\mathfrak{S}^{\uparrow}(P) \subseteq \mathfrak{S}^h(P) \subseteq \mathfrak{S}(P) \subseteq \mathfrak{S}^s(P)$.

We shall study the connection between these spectra for $(P, \leq) = (\omega^{\omega}, \leq^*)$. It is easy to see that $\mathfrak{b} = \min \mathfrak{S}^{\uparrow}(\omega^{\omega}, \leq^*) = \min \mathfrak{S}^s(\omega^{\omega}, \leq^*)$. In joint work with Laberge (Forcing tightness in products of fans, Fund. Math. 150 (1996)) we obtained a model where $\aleph_2 \in \mathfrak{S}^h(\omega^{\omega}, \leq^*) \setminus \mathfrak{S}^{\uparrow}(\omega^{\omega}, \leq^*)$ and $\mathfrak{c} = \aleph_2$.

Recently, we also proved that $\aleph_2 \in \mathfrak{S}(\omega^{\omega}, \leq^*) \setminus \mathfrak{S}^h(\omega^{\omega}, \leq^*)$ is consistent. In fact, we have two models for this, an easier one in which $\mathfrak{c} = \aleph_3$, and a more sophisticated one with $\mathfrak{c} = \aleph_2$.

The purpose of this talk is to present the main ideas of these three results. We conjecture that similar techniques can be used to get a model where $\aleph_2 \in \mathfrak{S}^s(\omega^\omega, \leq^*) \setminus \mathfrak{S}(\omega^\omega, \leq^*)$, but so far we have been unable to prove this.